
TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

 Application Note FAN4212

Ph. 480-503-4295 | NOPP@FocusLCD.com

RGB Interface with Arduino Due

This application note will discuss how to connect a
5.0” portrait mode display through the RGB interface
with an Arduino Due.

1 www.FocusLCDs.com

mailto:NOPP@focuslcd.com

RGB Interface with Arduino Due

The purpose of this application note is to review the RGB interface and discuss any requirements
necessary for communicating with the microcontroller through this interface. The display
communicates with the microcontroller over 45 pins through an RGB interface. An additional
graphics controller is required to use this interface. The graphics controller chosen for this
application is the SSD1963 LCD Controller Graphics card.

The display featured in this application note is a transmissive, 5.0” (67.56mmx122.35mm), portrait mode
TFT display. The part number for this display is E50RG84885LWAM520-CA. This display has a built in
controller IC ILI9806E. This display also has a capacitive touch feature. Features of this display are listed
below.

TFT Features
Low Input Voltage: 3.3V Backlight Voltage: 19.2V, 40mA
Display Colors: 65k/262k/16.7M colors Viewing Angle: All View
Interface: 3 wire SPI + 24-bit parallel RGB TFT Controller IC: ILI9806E
CTP Interface: I2C CTP Controller IC: G911
Display Mode: Transmissive/Normally Black CTP Touch Mode: 5-Point

Mechanical Information
Item Min Typ. Max Unit Note

Module
Size

Height (H) 67.56 mm -
Vertical (V) 122.35 mm -
Depth (D) 4.03 mm -

2 www.FocusLCDs.com

FAN4212

https://focuslcds.com/product/5-0-tft-display-capacitive-tp-e50rg84885lwam520-ca
https://focuslcds.com/content/ILI9806E.pdf

Requirements
 This section will discuss the materials that are used in this application. Below is a list of the
components used and their specified function.

Item Description Note

5.0” TFT Display Part No: E50RG84885LWAM520-CA. FocusLCDs.com

Arduino Duo Arduino Due microcontroller, 32-bit ARM core
processor, 54 pins. Arduino

SSD1963 Controller SSD1963 LCD Graphics Controller, 1215kB embedded
SRAM for display frame buffer. Solomon

FPC Connector 45-pin FPC connector. Converts 45-pin ribbon display
connector to output pins.

DC Power Supply Voltage generator to provide 19.2V, 40mA to display
backlight.

Micro USB Micro USB Connectors for Arduino serial programming
interface.

The display used in this application has an internal built-in display controller IC ILI9806E. This controller IC
does not contain internal RAM and therefore an additional graphics controller SSD1963 is required to
provide the RAM that supports the RGB interface. The ILI9806E controller IC that is built into the display
provides the 3-wire serial interface to input the initialization commands for the RGB interface.

3 www.FocusLCDs.com

FAN4212

https://focuslcds.com/product/5-0-tft-display-capacitive-tp-e50rg84885lwam520-ca
https://focuslcds.com/
https://store.arduino.cc/usa/due
http://www.solomon-systech.com/en/product/display-system-solutions/display-controller/ssd1962/
https://focuslcds.com/content/ILI9806E.pdf

Once the initialization commands are sent via the 3-wire serial interface, the graphic controller will be
used to send the RGB commands to the display. The SSD1963 graphics controller chip is used to
communicate to the RGB interface on the display. The graphics controller provides the SRAM required to
drive the display. This controller provides a 1215kB frame buffer to support the 24-bit graphics data to
the display.

The graphics controller would not be required if the internal IC embedded in the display contains internal
RAM. The specification sheet for the embedded display controller IC should be used to verify this
information. The graphics controller chip is accessed after the SPI initialization of the display. The graphics
controller chip communicates with the microcontroller through a 16-bit parallel 8080 MCU interface.

The microcontroller in this application is a 32-bit ARM core processor. This device communicates with the
display over the serial interface to send the SPI initialization commands. Once completed, the
microcontroller will then communicate to the graphics controller through 8-bit parallel initialization
command and then 16-bit graphical data commands and functions.

Hardware Connections
A review of the connection ports and pins between each device will be specified in this section. Starting
with the display and the connections with the graphics controller as well as the microcontroller. The
display’s 3 wire serial pins can be directly connected to the microcontroller. The RGB interface pins will
be connected to the graphics controller. Below is a description of the pin connections on the display.

5.0” TFT Pin Assignment
Pin No. TFT Pins Description Connection

1 XR
Resistive touch panel interface pins. Not
connected for this display. Leave open

2 YD
3 XL
4 YU
5 GND

Ground Ground
6 GND
7 VCI Supply voltage

3.3V
8 IOVCC I/O supply voltage
9 SDO Serial data output pin Not connected

10 SDI Serial data input pin Digital pin 8 on MCU
11 SCL Serial clock pin Digital pin 13 on MCU
12 CS Chip select pin for the serial interface Digital pin 10 on MCU
13 RESET Reset pin Digital pin 9 on MCU

14-37 DB23-DB0 24-bit parallel bi-directional data but for RGB
interface

RGB data pins on GC (see
datasheet)

38 DE Data enable pin for RGB interface LDEN pin on GC
39 DOTCLK Dot clock signal for RGB interface LSHIFT pin on GC
40 HSYNC Line synchronizing signal for RGB interface LLINE pin on GC
41 VSYNC Frame synchronizing signal for RGB interface LFRAME pin on GC
42 NC Not connected N/C
43 LEDK Cathode pin of the backlight Backlight ground
44 NC Not connected N/C
45 LEDA Anode pin of the backlight +19.2V, 40mA

GC: Graphics Controller (SSD1963), MCU: Microcontroller (Arduino Due), N/C: Not connected

4 www.FocusLCDs.com

FAN4212

The next hardware connection that will be reviewed is between the graphics controller chip and the
microcontroller. The two devices are connected through a 16-bit 8080 parallel interface. The graphics
controller will receive initialization commands from the microcontroller specifying its own requirements
as well as commands that will be sent to the display over the RGB interface. The parallel connection
between the microcontroller and the graphics controller are as follows.

Graphics Controller (SSD1963) Pin Assignment
Pin No. SSD1963 Pins Description Connection

1 VCC Voltage supply 3.3V 3.3V
2 GND Ground Logic ground
3 DB15 Data bus 15 Digital pin 29 on MCU
4 DB14 Data bus 14 Digital pin 28 on MCU
5 DB13 Data bus 13 Digital pin 27 on MCU
6 DB12 Data bus 12 Digital pin 26 on MCU
7 DB11 Data bus 11 Digital pin 25 on MCU
8 DB10 Data bus 10 Digital pin 24 on MCU
9 DB9 Data bus 9 Digital pin 23 on MCU

10 DB8 Data bus 8 Digital pin 22 on MCU
11 DB7 Data bus 7 Digital pin 30 on MCU
12 DB6 Data bus 6 Digital pin 31 on MCU
13 DB5 Data bus 5 Digital pin 32 on MCU
14 DB4 Data bus 4 Digital pin 33 on MCU
15 DB3 Data bus 3 Digital pin 34 on MCU
16 DB2 Data bus 2 Digital pin 35 on MCU
17 DB1 Data bus 1 Digital pin 36 on MCU
18 DB0 Data bus 0 Digital pin 37 on MCU
19 WR Parallel interface write pin Analog pin A1 on MCU
20 RS Parallel interface register select pin Analog pin A2 on MCU
21 RST Parallel interface reset pin 3.3V
22 CS Parallel interface chip select pin Analog pin 3 on MCU
23 GND Ground Ground

GC: Graphics Controller (SSD1963), MCU: Microcontroller (Arduino Due), N/C: Not connected

The microcontroller provides the logic voltage and logic ground for both the display and the graphics
controller. There are two reset pins total, one connected to the display and one for the graphics controller.
It is important to only use the reset pin for the SPI initialization and set the graphics controller reset to
3.3V. If the graphics controller reset pin is toggled, the SPI initialization commands stored on the display
will be reset as well.

The Arduino Due is connected to both the display and the graphics controller. First the microcontroller
sends the SPI initialization commands to the display’s embedded controller IC. Next it will communicate
with the graphics controller over an 8-bit 8080 parallel interface to initialize the 16-bit parallel interface
parameters. Once both devices are initialized, further commands can be sent through the graphics
controller to the display to create an image.

5 www.FocusLCDs.com

FAN4212

Commands
The initialization commands required for the display and graphics controller to start will be reviewed in
this section. The microcontroller will need to send two sets of initialization code over each interface. The
pins will need to be calibrated to each of their specified interfaces, SPI and 8080 Parallel interfaces. The
first set of initialization commands are sent to the display’s SPI pins. This code will define the RGB interface
parameters required to use this interface.

The initialization code that is sent to the displays SPI pins is as follows.

This code defines the RGB interface timing characteristics, the resolution of the display, the voltage
settings and much more. The initialization commands and data specific to the display can be found in the
data sheet of the embedded IC controller ILI9806E. Review the specification sheet for this controller for
details on the commands and functions of this code.

To send the data and commands over the SPI interface, four peripheral pins will need to be declared
depending on the microcontroller used. Once the data pins are setup the SPI interface can send the
initialization code in the following sequence. This code is represented in the following timing diagram as
a typical 3-wire SPI interface.

3-Wire Serial Interface Timing Diagram

6 www.FocusLCDs.com

FAN4212

https://focuslcds.com/content/ILI9806E.pdf

The initialization code for the graphics controller is sent over a parallel 8080 interface. The sequence of
commands is to first initialize the graphics controller and specify the display parameters, followed by the
code that will be sent over the 16 data buses. The initialization commands for the graphics controller
SSD1963 are detailed in the controller’s specification sheet. Below is the code used to initialize the
graphics controller.

The initialization code for the graphics controller defines the parameters of the display and the required
timing characteristics. The specifications and timing definitions can be found in the spec sheet of the
display. The commands that are sent in this section lets the graphics controller know the details specific
to the display that we are using in this example. The data is sent over the 8080-parallel interface to the
graphics controller. Below is the timing diagram of this parallel interface.

Parallel 8080-series Interface Timing Diagram

7 www.FocusLCDs.com

FAN4212

Conclusion
After the initialization commands for both the display and the graphics controller are sent, the display is
now ready for communication. The graphical data or images will be sent to the graphics controller’s RAM
to be accessed by the display via the RGB interface. Communication to the display is fast and efficient for
transmitting images that are to be displayed. For this example, an application was written to display
bitmaps on the screen. Below is the output of this example.

8 www.FocusLCDs.com

FAN4212

DISCLAIMER

Buyers and others who are developing systems that incorporate Focus LCDs products (collectively,
“Designers”) understand and agree that Designers remain responsible for using their independent
analysis, evaluation and judgment in designing their applications and that Designers have full and
exclusive responsibility to assure the safety of Designers' applications and compliance of their applications
(and of all Focus LCDs products used in or for Designers’ applications) with all applicable regulations, laws
and other applicable requirements.

Designer represents that, with respect to their applications, Designer has all the necessary expertise to
create and implement safeguards that:

(1) anticipate dangerous consequences of failures

(2) monitor failures and their consequences, and

(3) lessen the likelihood of failures that might cause harm and take appropriate actions.

Designer agrees that prior to using or distributing any applications that include Focus LCDs products,
Designer will thoroughly test such applications and the functionality of such Focus LCDs products as used
in such applications.

9 www.FocusLCDs.com

	Text2: RESET_SPI=1;
delay(1);
RESET_SPI=0;
delay(10);
RESET_SPI=1;
delay(120);

write_command(0xE0);
write_data(0x00);
write_data(0x07);
write_data(0x0f);
write_data(0x0D);
write_data(0x1B);
write_data(0x0A);
write_data(0x3c);
write_data(0x78);
write_data(0x4A);
write_data(0x07);
write_data(0x0E);
write_data(0x09);
write_data(0x1B);
write_data(0x1e);
write_data(0x0f);

write_command(0xE1);
write_data(0x00);
write_data(0x22);
write_data(0x24);
write_data(0x06);
write_data(0x12);
write_data(0x07);
write_data(0x36);
write_data(0x47);
write_data(0x47);
write_data(0x06);
write_data(0x0a);
write_data(0x07);
write_data(0x30);
write_data(0x37);
write_data(0x0f);

write_command(0xC0);
write_data(0x10);
write_data(0x10);

write_command(0xC1);
write_data(0x41);

write_command(0xC5);
write_data(0x00);
write_data(0x22);
write_data(0x80);

write_command(0x36);
write_data(0x48);

write_command(0x3A); //Interface Mode Control
write_data(0x55);

write_command(0XB0); //Interface Mode Control
write_data(0x00);

write_command(0xB1); //Frame rate 70HZ
write_data(0xB0);
write_data(0x11);

write_command(0xB4);
write_data(0x02);

write_command(0xB7);
write_data(0xC6);

write_command(0xE9);
write_data(0x00);

write_command(0XF7);
write_data(0xA9);
write_data(0x51);
write_data(0x2C);
write_data(0x82);

/**********set rgb interface mode******************/
write_command(0xB6);
write_data(0x02); //30 set rgb
write_data(0x02); //GS,SS 02，42，62
write_data(0x3B);

write_command(0x2A); //Frame rate control
write_data(0x00);
write_data(0x00);
write_data(0x01);
write_data(0x3F);

write_command(0x2B); //Display function control
write_data(0x00);
write_data(0x00);
write_data(0x01);
write_data(0xDF);

write_command(0x21);

write_command(0x11);
delay(120);
write_command(0x29); //display on
write_command(0x2c);
	Text3: wr_com8080_16(0x00,0xe2);//PLL multiplier, set PLL clock to 120M
 wr_data8080_16(0x00,0x23);//53//N=0x36 for 6.5M, 0x23 for 10M crystal
 wr_data8080_16(0x00,0x04); //4

 wr_com8080_16(0x00,0xe0);// PLL enable
 wr_data8080_16(0x00,0x01);
 delay(5);

 wr_com8080_16(0x00,0xe0);
wr_data8080_16(0x00,0x03);
delay(5);

wr_com8080_16(0x00,0x01);
delay(5);

wr_com8080_16(0x00,0xe6);//PLL setting for PCLK, depends on resolution
wr_data8080_16(0x00,0x03);//01 6.75M
wr_data8080_16(0x00,0x66);//54
wr_data8080_16(0x00,0x65); //e6
wr_com8080_16(0x00,0xB0); //LCD SPECIFICATION
wr_data8080_16(0x00,0x24); //24 0x04 18bit
wr_data8080_16(0x00,0x00);//00,20,40
wr_data8080_16(0x00,(HDP>>8)&0X00FF); //Set HDP
wr_data8080_16(0x00,(HDP&0X00FF));
wr_data8080_16(0x00,((VDP>>8)&0X00FF)); //Set VDP
wr_data8080_16(0x00,(VDP&0X00FF));
wr_data8080_16(0x00,0x00);
delay(5);

 wr_com8080_16(0x00,0xB4); //HSYNC Set front porch and back porch
 wr_data8080_16(0x00,((HT>>8)&0X00FF)); //Set HT
 wr_data8080_16(0x00,(HT&0X00FF));
 wr_data8080_16(0x00,(HPS>>8)&0X00FF); //Set HPS
 wr_data8080_16(0x00,(HPS&0X00FF));
 wr_data8080_16(0x00,HPW); //Set HPW
 wr_data8080_16(0x00,((LPS>>8)&0X00FF)); //SetLPS
 wr_data8080_16(0x00,(LPS&0X00FF));
 wr_data8080_16(0x00,0x00);

wr_com8080_16(0x00,0xB6); //VSYNC
wr_data8080_16(0x00,((VT>>8)&0X00FF)); //Set VT
wr_data8080_16(0x00,(VT&0X00FF));
wr_data8080_16(0x00,((VPS>>8)&0X00FF)); //Set VPS
wr_data8080_16(0x00,(VPS&0X00FF));
wr_data8080_16(0x00,(VPW)); //Set VPW
wr_data8080_16(0x00,((FPS>>8)&0X00FF)); //Set FPS
wr_data8080_16(0x00,(FPS&0X00FF));

wr_com8080_16(0x00,0x2A);
wr_data8080_16(0x00,0);
wr_data8080_16(0x00,0);
wr_data8080_16(0x00,HDP>>8);
wr_data8080_16(0x00,HDP&0x00ff);

wr_com8080_16(0x00,0x2b);
wr_data8080_16(0x00,0);
wr_data8080_16(0x00,0);
wr_data8080_16(0x00,VDP>>8);
wr_data8080_16(0x00,VDP&0x00ff);

wr_com8080_16(0x00,0x36);//rotation
wr_data8080_16(0x00,0x00);

wr_com8080_16(0x00,0x0C);//
wr_data8080_16(0x00,0x50);

wr_com8080_16(0x00,0xf0);//1963-pixel data interface
wr_data8080_16(0x00,0x03); //16-bit (565 format)

wr_com8080_16(0x00,0x3A);//LCD pixel format
wr_data8080_16(0x00,0x50); //50-16BIT,60-18BIT,70-24BIT

wr_com8080_16(0x00,0x29);//display on
delay(100);

