
TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

 Application Note FAN4212

Ph. 480-503-4295 | NOPP@FocusLCD.com

3 Wire SPI + Parallel RGB Interface

A display interface that is common for TFT displays is the
combination of the 3-wire Serial Peripheral Interface (SPI) and
the 16/18/24-bit RGB parallel interface. The two interfaces are
used in a sequence to communicate data to the display. This
note will discuss how to set up a display using the 3-wire SPI
+24-bit RGB parallel interface.

1 www.FocusLCDs.com

mailto:NOPP@focuslcd.com

3 Wire SPI + Parallel RGB Interface

The 3-wire Serial Peripheral Interface (SPI) and the 16/18/24-bit RGB parallel interface are used in a
sequence to communicate data to the display. The SPI interface is first used to initialize the display
parameters through command registers. Once initialized, the display can receive data over the RGB
parallel interface at a higher speed. This data can be sent in segments of 16, 18 or 24-bit lengths
depending on what is specified by the SPI initialization commands.

The display used in this application note is a 3” TFT with 854x480 pixels. This display has high resolution
and high color which requires a faster interface so the pixel clock can maintain a 60Hz frame rate. The
part number for this display is E30RA-FW400-N. Details of this display are described below.

Item Specification Unit
Part No. E30RA-FW400-N -

Type TFT -

Resolution 480x854 dots

Colors 16.7M -

Size 42.04 x 73.67 x 2.17 mm

Interface 3SPI+16/18/24bit RGB -

Voltage 3.3 V

Controller ST7701S -

Backlight 400 nits

Mode Transmissive -

FAN4213

2 www.FocusLCDs.com

https://focuslcds.com/product/3-0-tft-display-no-tp-e30ra-fw400-n

Connecting the Display
The display is connected to a graphics controller over a 24 parallel data bus and the display’s signaling
pins. A graphics controller is used in addition to a microcontroller to provide the high-speed clock signal
required to support this resolution and color depth. The connections to the graphics controller in the
following table can be changed to connect to a single microcontroller, if the device has RGB parallel
dedicated pins. The minimum requirement of RAM reserved for the frame buffer is calculated as (480
pixels x 854 pixels x 24bits/pp) 1.23 MB which will need to be provided by the microcontroller, graphics
controller or external memory.

There are 45 pins that are required to be connected to the graphics controller. This includes the 3-wire
SPI interface pins and the 24-bit parallel RGB data pins. This display is operated at a low voltage of 3.3V
which can be provided by the microcontroller. The display has an additional feature of IPS view, and a
bright backlight operated at 19.2V. The backlight voltage will need to be provided externally to the
display. Below are the pin functions and connections between the display and the controller.

NO. Pin Description Connection
1 XR

Resistive touch panel terminals Not connected
2 YD
3 XL
4 YU
5 GND

System ground Ground
6 GND
7 VCI Supply voltage for the display 3.3V
8 IOVCC Supply voltage for the I/O pins 1.8-3.3V
9 SDO Serial interface output pin Not connected

10 SDI Serial data input pin Digital pin of microcontroller

11 SCL Serial interface clock
Digital pin of microcontroller or system
clock terminal @2MHz

12 CS Chip select signal for the serial interface Digital pin on microcontroller

13 RESET Reset signal of the display
Reset pin or digital pin on
microcontroller

14-37 DB23-DB0
24-bit parallel bidirectional data bus for
the RGB interface.

Connected to 24 bidirectional digital
pins on the graphics controller

38 DE
Data enable signal for the RGB parallel
interface

Connect to DE pin on graphics controller

39 PCLK Clock signal for the pixels of the display
Graphics controller DCLK pin set to
29MHz

40 HSYNC
Horizontal sync signal. Synchronizes
each line of pixels.

Hsync pin on graphics controller

41 VSYNC
Vertical sync signal. Synchronizes the
frame total of the display.

Vsync pin on graphics controller

FAN4213

3 www.FocusLCDs.com

42 NC Not connected Not connected
43 LEDK Cathode pin of the backlight External backlight power GND
44 NC Not connected Not connected
45 LEDA Anode pin of the backlight External backlight voltage 19.2V, 20mA

Setting Interface Clock Signals
The serial interface clock is run at a lower frequency of 2Mhz. This frequency was chosen to maintain
signal integrity and can be changed to any value between 1-15Mhz for this controller. At higher
frequencies, noise can become a factor and create errors when sending commands and data. Since the
SPI interface is only used to send 8-bit commands to initialize the display, it does not require a high
frequency clock. This makes it possible for a basic microcontroller to provide these signals without the
use of the graphics controller.

The DCLK signal is determined by the resolution, porch settings of the HSYNC and VSYNC signals and the
frame rate of the display. The frame rate is standard at 60Hz, which is the minimum frequency to
maintain an image. The timing parameters of the HSYNC and VSYNC signals are specified by the
controller. Below are the timing parameters specified in the ST7701S datasheet and the displays
datasheet.

Parameter Description Min. Typ. Max. Unit

Horizontal Back Porch Start position of the horizontal active area. 2 50 255 DCLK

Horizontal Front Porch Start position of the HSYNC pulse signal 2 10 - DCLK

Horizontal Pulse Width Number of DCLKs in one HSYNC pulse signal 2 2 255 DCLK

Horizontal Total Total number of DCLKs in horizontal line 2 542 - DCLK

Vertical Back Porch Start position of the vertical active area 2 30 254 line

Vertical Front Porch Start position on the VSYNC pulse signal 2 10 - line

Vertical Pulse Width Number of lines in the VSYNC signal 2 2 254 line

Vertical Total Total number of HSYNC pulses in one frame 2 896 - line

The total HSYNC period for this display is calculated as the total time in DCLKs for one line, including the
time where the pixels are not active. In this example, this value is calculated to be 480+50+10+2=542
DCLKs. The total VSYNC period for one frame of pixels to be displayed is calculated in the number of
lines. The total time it takes for one frame of pixels is 854+30+10+2=896 lines.

The dot clock (DCLK) signal is determined by these two totals and the frame rate in order to maintain
the image at 60Hz. The calculation of the DCLK signal is as follows: 542 x 896 x 60 = 29Mhz. This is a high
clock speed for the RGB interface. The maximum clock speed for the RGB parallel interface with this
controller is 33MHz. Certain steps should be taken to reduce noise on this signal to ensure reliability of
the data transmitted.

FAN4213

4 www.FocusLCDs.com

Initializing the Display Through SPI
The 3-wire SPI interface is used to send 8-bit commands and data to initialize the display. Each of these
commands can be found in the specification sheet for the display’s embedded controller IC ST7701S.
These commands specify the selection of color format, resolution, timing parameters and power
control. There are a few ways to send these commands to the display.

Most microcontrollers offer dedicated SPI interface pins for the SPI protocol. There are many code
repositories available for the SPI interface so there are many options for sending these commands and
data. In this application, the SCL clock signal is set at 2MHz. This lower frequency was chosen over a
maximum frequency of 15MHz to ensure proper signal timing and to avoid noise. Since the SPI interface
is used for a brief initialization period, high speed is not required.

Another way is to use any digital pins available and “bit-bang” the information. This is when the clock
and data pins are signaled on and off in the right sequence to communicate the data. This is done when
there are not specific SPI pins available. This is common with the 8051 microcontrollers where most
ARM and AVR microcontrollers have an SPI interface. This option has the benefit of control over
whether the data is set at the rising or falling edge of the clock signal. This can be different for each
display that uses the SPI interface for initialization, so it is important to confirm in the data sheet.

Below are SPI initialization commands for the 24-bit parallel RGB interface. These commands set many
functions of the display such as: timing constraints for the RGB interface, color depth, resolution, and
voltage control.

Initializing the Graphics Controller
This application uses a graphics controller to increase the clock speed and provide memory. If the
microcontroller is providing the RGB function to the display, then this step can be skipped. The graphics
controller used in this application is SSD1963. This graphics controller provides the memory for the
frame buffer of the display. The DCLK signal is also generated by this controller to an RGB PLL setting of
29MHz.

FAN4213

5 www.FocusLCDs.com

The RGB interface pins are connected to the graphics controller in parallel. This application uses the 24-
bit interface so all 24 data bus pins must be connected to the controller. The HSYNC, VSYNC, DE and
DCLK pins are also connected to this controller. The graphics controller is controlled by commands over
a 16-bit parallel MCU interface. These pins will need to be connected to the microcontroller to send the
initialization commands as well as the data that will be projected on the display.

The initialization of the graphics controller will specify the desired DCLK speed that is needed for the
RGB interface. These commands are sent by the microcontroller in sequences of 8-bits. Because the
commands are 8-bits, it is possible to send the data over an 8-bit parallel interface. The commands that
are used to initialize the graphics controller are reviewed in the data sheet of the IC SSD1963. Below are
the commands that were used to initialize the graphics controller.

Using the RGB Interface
The RGB interface can now be used to transmit data to the display. The serial interface no longer needs
to be used after initialization is complete. Now the 24 RGB data pins will send the 24-bits of RGB data
per clock cycle. The data in this example is processed at 24bpp. This means that each pixel will have 24-
bits of information for the color depth and that the display is capable of 24 million different color
variations.

A brief example of how to display colors on the display will be reviewed. Displaying colors onto the
screen requires sending 24-bit color data to each of the visible pixels in the display area. This can be
done by writing to each location in RAM where every pixel is stored and telling it which color you have
selected. This application can be used to portray bitmap pictures through the same process.

FAN4213

6 www.FocusLCDs.com

Below is the example used to write to RAM stored on the SSD1963 controller. This process is done using
the command “memory write” (0x2c) of the graphics controller for each of the pixels on the display. The
colors can be sent in 6-digit, 24-bit sequences and decoded or as three 8-bit sequences representing one
for each of the red, green, and blue components of the color. Below the color will be sent as
components of the RGB color in three steps on eight bits to the graphics controller. The image above
shows how the 24-bit data is sent to the graphics controller in sequences of 16-bits.

DISCLAIMER

Buyers and others who are developing systems that incorporate FocusLCDs products (collectively, “Designers”)
understand and agree that Designers remain responsible for using their independent analysis, evaluation and
judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety
of Designers' applications and compliance of their applications (and of all FocusLCDs products used in or for
Designers’ applications) with all applicable regulations, laws and other applicable requirements.

Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and
implement safeguards that:

(1) anticipate dangerous consequences of failures

(2) monitor failures and their consequences, and

FAN4213

7 www.FocusLCDs.com

(3) lessen the likelihood of failures that might cause harm and take appropriate actions.

Designer agrees that prior to using or distributing any applications that include FocusLCDs products, Designer will
thoroughly test such applications and the functionality of such FocusLCDs products as used in such applications.

FAN4213

8 www.FocusLCDs.com

	Not connected:
	System ground:
	Ground:
	33V:
	1833V:
	Serial interface output pin:
	Not connected_2:
	Serial data input pin:
	Serial interface clock:
	Reset signal of the display:
	Reset pin or digital pin on microcontroller:
	Not connected_3:
	Not connected_4:
	Not connected_5:
	Not connected_6:
	Anode pin of the backlight:
	Horizontal Total:
	Total number of DCLKs in horizontal line:
	2:
	542:
	DCLK:
	Vertical Back Porch:
	Start position of the vertical active area:
	2_2:
	30:
	254:
	line:
	Vertical Total:
	writecommand0x01 delayms200 writecommand0x11 delayms150 writecommand0x13 writecommand0x26 writedata0x01 writecommand0x36 writedata0x00 writecommand0x3a writedata0x50:
	Text2: write_command(0x01);
 delay_ms(200);
 write_command(0x11);
 delay_ms(150);
 write_command(0x13);

 write_command(0x26);
 write_data(0x01);

 write_command(0x36);
 write_data(0x00);

 write_command(0x3a);
 write_data(0x50);

 write_command(0xff);
 write_data(0x77);
 write_data(0x01);
 write_data(0x00);
 write_data(0x10); //bk0

 write_command(0xb0);
 write_data(0x0D);
 write_data(0x14);
 write_data(0x9C);
 write_data(0x0B);
 write_data(0x10);
 write_data(0x06);
 write_data(0x08);
 write_data(0x09);
 write_data(0x08);
 write_data(0x22);
 write_data(0x02);
 write_data(0x4F);
 write_data(0x0E);
 write_data(0x66);
 write_data(0x2D);
 write_data(0x1F);

 write_command(0xB1);
 write_data(0x00);
 write_data(0x17);
 write_data(0x9E);
 write_data(0x0F);
 write_data(0x11);
 write_data(0x06);
 write_data(0x0C);
 write_data(0x08);
 write_data(0x08);
 write_data(0x26);
 write_data(0x04);
 write_data(0x51);
 write_data(0x10);
 write_data(0x6A);
 write_data(0x33);
 write_data(0x1B);

 write_command(0xB8);
 write_data(0x10);

 write_command(0xc0);
 write_data(0xe9);
 write_data(0x03);

 write_command(0xc1);
 write_data(0x1e);
 write_data(0x0a);

 write_command(0xC2);//Inversion selection
 write_data(0x31);//31 2-DOT 37-Column
 write_data(0x0A);

 write_command(0xc3);
 write_data(0x00);

 write_command(0xc7);
 write_data(0x00);

 write_command(0xff);
 write_data(0x77);
 write_data(0x01);
 write_data(0x00);
 write_data(0x11);

 write_command(0xb0);
 write_data(0x60);

 write_command(0xb1);
 write_data(0x30);

 write_command(0xb2);
 write_data(0x87);

 write_command(0xb3);
 write_data(0x80);

 write_command(0xb5);//VGL
 write_data(0x49);

 write_command(0xb7);
 write_data(0x85);

 write_command(0xb8); //avdd
 write_data(0x21);

 write_command(0xc1);
 write_data(0x78);

 write_command(0xC2);
 write_data(0x78);
 write_command(0xff);
 write_data(0x77);
 write_data(0x01);
 write_data(0x00);
 write_data(0x00);

 write_command(0x29);
	Text4: #define TFT_HSYNC_BACK_PORCH 50ULL
#define TFT_HSYNC_FRONT_PORCH 10ULL
#define TFT_HSYNC_PULSE 2ULL
#define TFT_HSYNC_PERIOD (TFT_HSYNC_PULSE + TFT_HSYNC_BACK_PORCH + TFT_WIDTH + TFT_HSYNC_FRONT_PORCH)
#define TFT_VSYNC_PERIOD (TFT_VSYNC_PULSE + TFT_VSYNC_BACK_PORCH + TFT_HEIGHT + TFT_VSYNC_FRONT_PORCH)
#define TFT_HEIGHT 854ULL
#define TFT_VSYNC_BACK_PORCH 30ULL
#define TFT_VSYNC_FRONT_PORCH 10ULL
#define TFT_VSYNC_PULSE 2ULL

LCD_WR_REG(0x01);
LCD_WR_REG(0x23);
LCD_WR_DATA(0X02);
LCD_WR_DATA(0X02);
LCD_WR_DATA(0X04);
LCD_WR_REG(0xe0);
LCD_WR_DATA(0x01);
LCD_WR_REG(0xe0);
LCD_WR_DATA(0x03);
LCD_WR_REG(0xb0);
LCD_WR_DATA(0x0c);
LCD_WR_DATA(0x00);
LCD_WR_DATA(mHIGH((TFT_WIDTH-1)));
LCD_WR_DATA(mLOW((TFT_WIDTH-1)));
LCD_WR_DATA(mHIGH((TFT_HEIGHT-1)));
LCD_WR_DATA(mLOW((TFT_HEIGHT-1)));
LCD_WR_DATA(0x00);
LCD_WR_REG(0xf0);
LCD_WR_DATA(0x50);
LCD_WR_REG(0xe6);
LCD_WR_DATA(0x03);
LCD_WR_DATA(0xdd);
LCD_WR_DATA(0xdd);
LCD_WR_REG(0xb4);
LCD_WR_DATA(mHIGH(TFT_HSYNC_PERIOD));
LCD_WR_DATA(mLOW(TFT_HSYNC_PERIOD));
LCD_WR_DATA(mHIGH((TFT_HSYNC_PULSE + TFT_HSYNC_BACK_PORCH)));
LCD_WR_DATA(mLOW((TFT_HSYNC_PULSE + TFT_HSYNC_BACK_PORCH)));
LCD_WR_DATA(TFT_HSYNC_PULSE);
LCD_WR_DATA(0x00);
LCD_WR_DATA(0x00);
LCD_WR_DATA(0x00);
LCD_WR_REG(0xb6);
LCD_WR_DATA(mHIGH(TFT_VSYNC_PERIOD));
LCD_WR_DATA(mLOW(TFT_VSYNC_PERIOD));
LCD_WR_DATA(mHIGH((TFT_VSYNC_PULSE + TFT_VSYNC_BACK_PORCH)));
LCD_WR_DATA(mLOW((TFT_VSYNC_PULSE + TFT_VSYNC_BACK_PORCH)));
LCD_WR_DATA(TFT_VSYNC_PULSE);
LCD_WR_DATA(0x00);
LCD_WR_DATA(0x00);
LCD_WR_REG(0x29);
	Text5: void display_color(unsigned char red, unsigned char green, unsigned char blue)
{
word i,j;
LCD_WR_REG(0x2c);
for(i=0;i<854;i++)
 for(j=0;j<480;j++)
 {
 LCD_WR_DATA(red, green, blue);
 }
}

