Tab:835-12

rev:B3

Number: AiP31565CR-AX-XS-A040EN

Product Specification

Specification Revision History:

Version	Date	Description
2019-03-A1	2019-03	New
2019-12-B1	2019-12	Replace the new template and modify the content

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 1/ 49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

1. General Description

The AiP31565CR is a single-chip dot matrix LCD driver that can be connected directly to a microprocessor bus. 8-bit parallel or 4-line SPI display data sent from the microprocessor is stored in the internal display data RAM and the chip generates a LCD drive signal independent of the microprocessor. Because the chips in the AiP31565CR contain 65×132 bits of display data RAM and there is a 1-to-1 correspondence between the LCD panel pixels and the internal RAM bits, these chips enable displays with a high degree of freedom.

The AiP31565CR chips contain 65 common output circuits and 132 segment output circuits, so that a single chip can drive a 65×132 dot display (capable of displaying 8 columns×4 rows of a 16×16 dot kanji font).

The chips are able to minimize power consumption because no external operating clock is necessary for the display data RAM read/write operation. Furthermore, because each chip is equipped internally with a low-power LCD driver power supply, resistors for LCD driver power voltage adjustment and a display clock CR oscillator circuit, the AiP31565CR can be used to create the lowest power display system with the fewest components for high-performance portable devices.

Features:

- Directly display RAM data through Display Data RAM.
- RAM capacity:65×132=8580 bits
- Display duty selectable by select pin

1/65 duty:65 common×132 segment

1/49 duty:49 common×132 segment

1/33 duty:33 common×132 segment

1/55 duty:55 common×132 segment

1/53 duty:53 common×132 segment

- Bidirectional 8-bit parallel interface supports: 8080-series and 6800-series MPU
 Serial interface (SPI-4) is also supported (write only)
- Abundant command functions

Display data Read/Write, display ON/OFF, Normal/Reverse display mode, page address set, display start line set, column address set, status read, display all points ON/OFF, LCD bias set, electronic volume, read/modify/write, segment driver direction selects, power saver, common output status select, V0 voltage regulation internal resistor ratio set.

- Embedded analog power supply circuits for Liquid Crystal driving: Booster, Regulator and Follower.
- Embedded Booster circuit:

 $2\times,3\times,4\times,5\times$ and $6\times$ boost ratios are supported. Independent input (VDD2) for boost reference voltage.

High-accuracy Regulator circuit:

Build-in Electronic volume function for the contrast control. Thermal gradient=-0.05%/°C.

Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

- Embedded voltage Follower circuit for LCD driving.
- Embedded R-C oscillator circuit.

The external clock is also supported.

• Extremely low power consumption:60uA, bare dice (using the internal power).

Settings:

VDD-VSS=VDD2-VSS=3.0V,Booster Ratio=4, V0-VSS=11.0V. Display OFF and the normal mode is selected.

• Logic power supply: VDD-VSS=2.4V to 3.3V

Analog Power (Boost reference voltage):

VDD2-VSS=2.4V to 3.3V

Booster maximum voltage limited

VOUT=13.5V

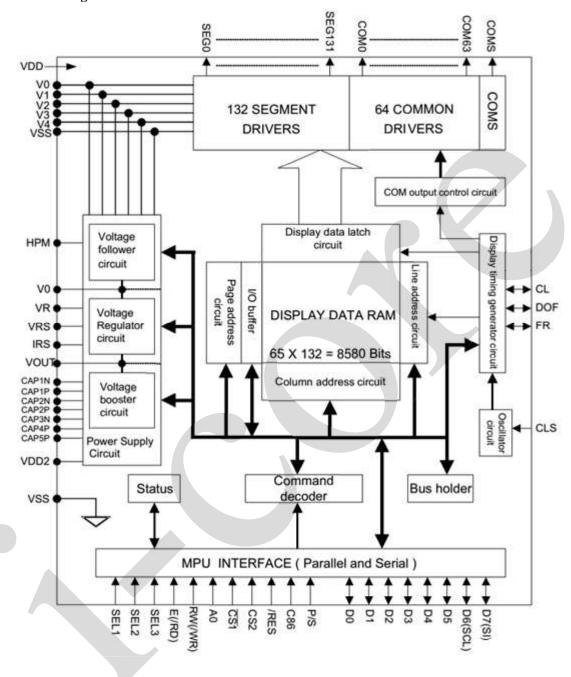
Liquid crystal drive power supply:V0–VSS=3.0V to 12.0V

- Wide range of operating temperatures:–30 to 80°C
- Package type:COG only.
- The chip is not designed to resist the light or to resist the radiation.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

http://www.i-core. cn

P.C.: 214072


VER:2019-12-B1

ab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

2, Block Diagram And PAD Description

2.1, Block Diagram

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 4/ 49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Wuxi I-CORE Electronics Co., Ltd. ab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

2.2, PAD Description

PAD No.	PAD			Description				
I IDD	Name	D 1		<u> </u>				
VDD	Power	Power supply						
VDD2	Power	Power supply						
VSS	Power	Ground		1 0 4 10	D 1	1, 1,		
VRS	Power	This is the internal-ou	tput V _{REG} power s	upply for the LC	D power supply v	oltage regulator.		
V0、V1 V2、V3	Power	is determined by the lidivided or through determined based on V V0≥V1≥V2≥V3≥V4≥ When the power supp	his is a multi-level power supply for the liquid crystal drive. The voltage Supply applied determined by the liquid crystal cell, and is changed through the use of a resistive voltage vided or through changing the impedance using an op. amp. Voltage levels are termined based on VSS, and must maintain the relative magnitudes shown below. 10 \(\frac{1}{2}\text{V2}\text{V3}\(\frac{1}{2}\text{V4}\(\frac{1}{2}\text{VSS} \) 11 The the power supply turns ON, the internal power supply circuits produce the V1 to Voltages shown below. The voltage settings are selected using the LCD bias set command.					
V4		1/65 Duty	1/49 Duty	1/33 Duty	1/55 Duty	1/53 Duty		
		V1 8/9V0,6/7V0	7/8V0,5/6V0	5/6V0,4/5V0	7/8V0,5/6V0	7/8V0,5/6V0		
		V2 7/9V0,5/7V0	6/8V0,4/6V0	4/6V0,3/5V0	6/8V0,4/6V0	6/8V0,4/6V0		
		V3 2/9V0,2/7V0	2/8V0,2/6V0	2/6V0,2/5V0	2/8V0,2/6V0	2/8V0,2/6V0		
		V4 1/9V0,1/7V0	1/8V0,1/6V0	1/6V0,1/5V0	1/8V0,1/6V0	1/8V0,1/6V0		
			,		,			
CAP1P	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor between	en this terminal	and the CAP1N		
CAP1N	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor betwee	en this terminal	and the CAP1P		
CAP2P	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor between	en this terminal	and the CAP2N		
CAP2N	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor betwe	en this terminal	and the CAP2P		
CAP3P	0	DC/DC voltage conv terminal.	erter. Connect a	capacitor between	en this terminal	and the CAP1N		
CAP4P	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor between	en this terminal	and the CAP2N		
CAP5P	О	DC/DC voltage conv terminal.	erter. Connect a	capacitor between	en this terminal	and the CAP1N		
VOUT	0	DC/DC voltage conveterminal.	erter. Connect a	capacitor between	n this terminal a	nd VSS or VDD		
VR	I	Output voltage regularesistive voltage divided IRS="L":the V0 voltaged IRS="H":the V0 voltaged IRS="H"	er. ge regulator interr	nal resistors are no	ot used.	nd V0 through a		
D5~D0 D6(SCL)	I/O	This is an 8-bit bi-dire bus.	ctional data bus tl	nat connects to an	8-bit or 16-bit st	andard MPU data		

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 5/49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Wuxi I-CORE Electronics Co., Ltd. Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

	1ab:835	-12	rev:B3		Number: AIP31363CR	-AX-XS-AU4UEN	
D7(SI)		When the	serial interface (SPI-4) is selected (P	/S="L"):		
		D7 : seria	l data input (SI);D6:th	e serial clock in	nput (SCL).		
		D0 to D5	should be connected to	o VDD or float	ing.		
		When the	chip select is not activ	e, D0 to D7 ar	e set to high impeda	nce.	
		This is co	nnect to the least signi	ficant bit of the	e normal MPU addre	ess bus, and it deterr	nines
A0	I	whether th	ne data bits are data or	command.			
Au	1	A0="H":I	indicates that D0 to D7	are display da	ta.		
		A0="L":I	ndicates that D0 to D7	are control da	ta.		
/RES	I	When /RE	ES is set to "L", the reg	gister settings a	re initialized (cleare	d).	
/KES	1	The reset	operation is performed	d by the /RES s	ignal level.		
CS1	ı	This is the	e chip select signal. W	Then $\overline{\text{CS1}}$ ="L	"and CS2="H",then	the chip select bec	omes
CS2	I		d data/command I/O is				
		-	onnected to 8080 serie		in is treated as the '	'/RD" signal of the	8080
/RD			is LOW-active. The d				
(E)	I	• When c	onnected to 6800 seri	es MPU, this	pin is treated as the	e "E" signal of the	6800
			is HIGH-active. This				
		• When co	onnected to 8080 serie	es MPU, this p	in is treated as the "	/WR" signal of the	8080
/11/10		MPU and	is LOW-active. The s	signals on the	data bus are latched	at the rising edge of	of the
/WR	I	/WR signa	al.				
(R/W)		• When co	onnected to 6800 series	es MPU, this p	in is treated as the "	R/W" signal of the	6800
		MPU and	decides the access typ	e:When R/W=	"H":Read.When R/V	W="L": Write.	
		This is the	e MPU interface select	tion pin.			
C86	I	C86="H"	:6800 Series MPU inte	erface.			
		C86="L":	8080 Series MPU inte	erface.			
		This pin c	onfigures the interface	to be parallel	mode or serial mode).	
		P/S="H":	Parallel data input/outp	put.			
		P/S="L":5	Serial data input.				
			wing applies depending		itus:		
P/S	I	P/S	Data/Command	Data	Read/Write	4-line SPI Cloc	:k
175	1	Н	A0	D0 to D7	/RD,/WR	X	
		L	A0	SI (D7)	Write only	SCL (D6)	
			="L", D0 to D5 must				
		` '	nd /WR (R/W) are fixe				
			access mode does NC				
			pin to enable or disabl		lisplay clock oscillat	or circuit.	
CLS	I		use internal oscillator:				
			use external clock inp	`	*		
		When CL	S="L",input the extern	nal display cloc	ek through the CL te	rminal.	
			e display clock input to				
		The follow	wing is true depending	on the CLS sta			-
CL	I/O		CLS		CL		
			"H"		Outp	ut	
			"L"		Inpu	t	

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province http://www.i-core. cn P.C.: 214072

Wuxi I-CORE Electronics Co., Ltd. Tab:835-12 rev:B3 Number:AiP31565

Number: AiP31565CR-AX-XS-A040EN

	1ab:835	-12 rev:B3		Number: A1P31565C	K-AA-AS-AU4UEN			
FR	О	This is the liquid crystal alter	•	signal terminal.				
/DOF	О	This is the LCD blanking control terminal.						
		This terminal selects the resis	stors for the V0	voltage level adjusti	nent.			
IRS	I	IRS="H":Use the internal res	sistors					
IKS	1	IRS="L":Do not use the inter		_				
		regulated by an external resistive voltage divider attached to the VR terminal This is the power control terminal for the power supply circuit for liquid crystal drive.						
		•	ninal for the po	wer supply circuit for	or liquid crystal drive.			
/HPM	I	/HPM="H":Normal mode						
		/HPM="L":High power mod						
		These pins are DUTY selecti		nx.	DI I G			
		SEL3,2,1	DU		BIAS			
SEL3		0,0,0	1/6		1/9 or 1/7			
SEL2	I	0,0,1	1/4		1/8 or 1/6			
SEL1		0,1,0	1/3		1/6 or 1/5			
		0,1,1	1/5		1/8 or 1/6			
		1,0,0	1/5	0.3	1/8 or 1/6			
		1,X,X These are terminals for IC terminals			-			
TEST0~7	I		sting.					
1E310~/	1 1	TEST0~6: left them open.						
		TEST7 must connected to VI						
		TEST7 must connected to VI These are the LCD segment display RAM and with the FI RAM DATA	drive outputs.	le level is selected fro	om VSS, V3, V2, and V			
SEG0~		These are the LCD segment display RAM and with the FI	drive outputs. R signal, a sing	le level is selected fr Output Normal Display	om VSS, V3, V2, and V Voltage Reverse Display			
SEG0~ SEG131	O	These are the LCD segment display RAM and with the F	c drive outputs. R signal, a sing FR H	Output Normal Display V0	voltage Reverse Display V2			
	O	These are the LCD segment display RAM and with the FI	r drive outputs. R signal, a sing FR H L	Output Normal Display V0 VSS	Voltage Reverse Display V2 V3			
	О	These are the LCD segment display RAM and with the FI RAM DATA H H L	c drive outputs. R signal, a sing FR H L H	Output Normal Display V0 VSS V2	Voltage Reverse Display V2 V3 V0			
	O	These are the LCD segment display RAM and with the FI	r drive outputs. R signal, a sing FR H L	Output Normal Display V0 VSS V2 V3	voltage Reverse Display V2 V3 V0 VSS			
	O	These are the LCD segment display RAM and with the FI RAM DATA H L L Power save	FR H L H L	Normal Display V0 VSS V2 V3	wom VSS, V3, V2, and Voltage Reverse Display V2 V3 V0 VSS SS	√ 0.		
	О	These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of to	FR H L H L he contents of	Normal Display V0 VSS V2 V3 the scan data and w	wom VSS, V3, V2, and Voltage Reverse Display V2 V3 V0 VSS SS	√ 0.		
	O	These are the LCD segment display RAM and with the Final RAM DATA H H L L Power save Through a combination of to level is selected from VSS, V	FR H L H L he contents of 74, V1, and V0	Output Normal Display V0 VSS V2 V3 Vthe scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin	√ 0.		
SEG131	O	These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data	r drive outputs. R signal, a sing FR H L H L H C H C H C H C H C H C H C H C	V2 V3 V2 the scan data and w	work VSS, V3, V2, and Voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin	√ 0.		
SEG131 COM0~	0	These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H	FR H L H L H Contents of 74, V1, and V0 H H H H H H H H H H H H H H H H H H H	Normal Display V0 VSS V2 V3 the scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a signal voltage VSS	√ 0.		
SEG131		These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H H	t drive outputs. R signal, a sing FR H L H L H C H C H C H C H C H C H C H C	VSS V2 V3 V3 the scan data and w	work VSS, V3, V2, and Voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0	√ 0.		
SEG131 COM0~		These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H H L	H L H Contents of V4, V1, and V0	Output Normal Display V0 VSS V2 V3 the scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0 V1	√ 0.		
SEG131 COM0~		These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H H L L L	t drive outputs. R signal, a sing FR H L H L H C H C H C H H H H H H H H H H	Output Normal Display V0 VSS V2 V3 the scan data and w	om VSS, V3, V2, and V Voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0 V1 V4	√ 0.		
COM0~COM63		These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H H L L L Power	t drive outputs. R signal, a sing FR H L H L H L H L H L H L H L H L H L H	Output Normal Display V0 VSS V2 V3 the scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0 V1 V4 VSS	ngle		
COM0~COM63	0	These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H L L L Power Save These are the COM output	t drive outputs. R signal, a sing FR H L H L H L H L H L H L H L H L H L H	Output Normal Display V0 VSS V2 V3 the scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0 V1 V4 VSS	ngle		
COM0~COM63		These are the LCD segment display RAM and with the FI RAM DATA H H L L Power save Through a combination of t level is selected from VSS, V Scan Data H H L L L Power	t drive outputs. R signal, a sing FR H L H	Output Normal Display V0 VSS V2 V3 the scan data and w	voltage Reverse Display V2 V3 V0 VSS SS ith the FR signal, a sin Output Voltage VSS V0 V1 V4 VSS	ngle		

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 7/ 49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

ab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

2.3, I/O Pin ITO Resister Limitation

PAD Name	ITO Resister
CL,FR,/DOF,C86,P/S,/HPM,SEL1~3,CLS,IRS	No Limitation
TEST0~7,VRS	Floating
VDD,VDD2,VSS,VOUT,VR	<100Ω
V0~4,CAP1P,CAP1N,CAP2P,CAP2N,CAP3P,CAP4P,CAP5P	<300Ω
CS1,CS2,/RD(E),/WR(R/W),A0,D0~7	<1kΩ
/RES	<10kΩ

Note:

- 1. To prevent the ESD pulse resetting the internal register, applications should increase the resistance of /RES signal(add a series resistor or increase ITO resistance). The value is different from modules.
- 2. The option setting to be "H" should connect to VDD.
- 3. The option setting to be "L" should connect to VSS.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

3, Electrical Parameter

3.1. Absolute Maximum Ratings (T_{amb}=25°C,VSS=0V, unless otherwise specified)

Characterist	ic	Symbol	Conditions	Value	Unit
Digital Power Suppl	y Voltage	VDD	-	-0.3~+3.6	V
Analog Power suppl	y voltage	VDD2	-	-0.3~+3.6	V
LCD Power supply	V0,VOUT	-	-0.3~+13.5	V	
LCD Power supply	voltage	V1,V2,V3,V4	-	-0.3~V0	V
Logic input vol	tage	V _{IN}		-0.3~VDD+0.3	V
Operating temperature		T_{OPR}	-	-30~+80	°C
Soldering Temperature	Bare chip	T_{STR}	-	-55~+125	°C

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
- 3. Insure the voltage levels of VOUT,V0,V1,V2,V3,V4 and VSS always match the correct relation: VOUT \geq V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq VSS

Province 9/49

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province http://www.i-core.cn P.C.: 214072

Wuxi I-CORE Electronics Co., Ltd. ab:835-12 rev:B3 Number:AiP31565

Tab:835-12

Number: AiP31565CR-AX-XS-A040EN

3.2, Electrical Characteristics

3.2.1 DC Characteristics (T_{amb}=-40~+85°C,VDD=3.0V,VSS=0V, unless otherwise specified)

Parameter	Symbol	Condit	ions	Min.	Тур.	Max.	Unit
Operating Voltage(1)	VDD	Note	1	2.4	-	3.3	V
Operating Voltage(2)	VDD2	Relative to V	SS,Note 2	2.4	-	3.3	V
High-level Input Voltage	V_{IH}	Note 3		0.8VDD	-	VDD	V
Low-level Input Voltage	V _{IL}	Note	3	VSS	-	0.2VDD	V
High-level Output Voltage	$ m V_{OH}$	I _{OH} =-0.5mA	A,Note 4	0.8VDD	-	VDD	V
Low-level Output Voltage	$V_{ m OL}$	$I_{OL}=0.5$ mA	,Note 4	VSS	-	0.2VDD	V
Input leakage current	I_{LI}	V_{IN} =VDD or V	VSS,Note 5	-1.0		1.0	uA
Output leakage current	I_{LO}	VOUT=VDD or	VSS,Note 6	-3.0	1	3.0	uA
Liquid Crystal Driver	D	V0=13.0V,SE	G、COM	-	2.0	3.5	kΩ
ON Resistance	R _{ON}	V0=8.0V,SEG、	COM,Note 7	-	3.2	5.4	kΩ
Static Consumption Current	I_{SS}	V0-VSS=13V,V	VDD,VDD2	-	0.01	2	uA
Output Leakage Current	I _{OQ}	V0-VSS	=13V	-	0.01	10	uA
Input Terminal Capacitance	C _{IN}	25℃,f=1	MHz	-	5.0	8.0	pF
Internal	f_{OSC}	1/65 and 1/33	duty,Note 8	17	20	24	kHz
Oscillator	TOSC	1/49,1/53,1		25	30	35	kHz
External	f_{CL}	1/65 and 1/33	duty,Note 8	17	20	24	kHz
Input	ICL	1/49,1/53,1	/55 duty	25	30	35	kHz
Supply Step-up output voltage Circuit	VOUT	Relative T	o VSS	-	-	13.5	V
Voltage regulator Circuit Operating Voltage	VOUT	Relative T	To VSS	6.0	ı	13.5	V
Voltage Follower Circuit Operating Voltage	V0	Relative To VSS,Note 9		4.0	-	13.5	V
Base Voltage	VRS	25°C,-0.05%/	C,Note 10	2.07	2.10	2.13	V
Display Pattern	ı	VDD=3V,V0-VS	SS=11V, OFF	-	16	27	uA
OFF (Note 11)	I_{DD}	VDD=3V,V0-VSS	=11V, Checker	-	19	32	uA
Display Pattern	$I_{ m DD}$	VDD=3.0V,	Normal Mode	-	90	130	uA
Checker (Note 12)	ממי	Quad step-up	High-Power	-	128	193	uA

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 10/49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

		voltage.	Mode				
		V0-VSS=11.0V					
		VDD=3.0V	Normal Mode	-	100	147	uA
		Quad step-up voltage. V0-VSS=11.0V	High-Power Mode	1	135	205	uA
Sleep mode	I_{DD}	VDD=	:3V	-	0.4	4	uA

Note:

- 1. While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
- 2. The operating voltage range for the VSS system and the V0 system is. This applies when the external power supply is being used.
- 3. The A0,D0 to D5,D6(SCL),D7(SI),/RD(E),/WR(R/W),/CS1,CS2,CLS,CL,FR,C86,P/S,/DOF,/RES,IRS, and /HPM terminals.
- 4. The D0 to D7, FR, /DOF, and CL terminals.
- 5.The A0,/RD(E),/WR(R/W),/CS1,CS2,CLS,C86,P/S,/RES,IRS and /HPM terminals.
- 6. Applies when the D0 to D5, D6(SCL), D7(SI), CL, FR, and /DOF terminals are in a high impedance state.
- 7. These are the resistance values for when a 0.1V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1,V2,V3 and V4). These are specified for the operating voltage(3) range. $R_{ON}=0.1V/\Delta I$ (Where ΔI is the current that flows when 0.1V is applied while the power supply is ON.)
- 8. The relationship between the oscillator frequency and the frame rate frequency.
- 9. The V0 voltage regulator circuit regulates within the operating voltage range of the voltage follower.
- 10. This is the internal voltage reference supply for the V0 voltage regulator circuit. In the AiP31565CR, the temperature range approximately -0.05%/°C.
- 11.It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.The AiP31565CR is 1/9 biased.Does not include the current due to the LCD panel capacity and wiring capacity.Applicable only when there is no access from the MPU.
- 12.It is the value on a AiP31565CR having the V_{REG} temperature gradient is -0.05%/°C when the V0 voltage regulator internal resistor is used.

Current consumption: During Display, without internal power system, current consumed by whole IC (bare die).

Test Pattern	Symbol	Conditions	Min.	Тур.	Max.	Unit
Display Pattern:		VDD=VDD2=3.0V,				
SNOW	I_{SS}	V0=11.0V,	-	19	32	uA
(Static)		T _{amb} =25°C				
		VDD=VDD2=3.0V,				
Display OFF	I_{SS}	V0=11.0V,	-	16	27	uA
		$T_{amb}=25$ °C				

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

Current consumption: During Display, with internal power system, current consumed by whole IC (bare die).

Test Pattern	Symbol	Conditions	Min.	Тур.	Max.	Unit
		VDD=VDD2=3.0V,		100	147	11 A
Display Pattern:	T	V0=11.0V,	-	100	14/	uA
SNOW	${ m I_{SS}}$	Booster=×4,		135	205	11 A
		T _{amb} =25°C	-	155	203	uA
		VDD=VDD2=3.0V,	-	90	130	uA
Diamles: OEE	${ m I_{SS}}$	V0=11.0V,				
Display OFF		Booster=×4,	_	128	193	uA
		T _{amb} =25°C				
Sleen Mode	ī	VDD=VDD2=3.0V,		0.4	4	77.4
Sleep Mode	I_{SS}	T _{amb} =25°C	-	0.4	4	uA

Note: The Current Consumption is DC characteristics

The relationship between oscillator frequency f_{OSC} , display clock frequency f_{CL} and liquid crystal frame rate frequency f_{FR} .

	Item	\mathbf{f}_{CL}	f_{FR}
1/65 Duty	Internal Oscillator Circuit	f _{OSC} /4	f _{OSC} /4/65
1/03 Duty	External Display Clock	External Display Clock (f _{CL})	$f_{CL}/260$
1/49 Duty	Internal Oscillator Circuit	f _{OSC} /8	f _{OSC} /4/49
1/49 Duty	External Display Clock	External Display Clock (f _{CL})	f _{CL} /196
1/33 Duty	Internal Oscillator Circuit	f _{OSC} /8	f _{OSC} /4/33
1/33 Duty	External Display Clock	External Display Clock (f _{CL})	f _{CL} /264
1/55 Duty	Internal Oscillator Circuit	f _{OSC} /8	f _{OSC} /4/55
1/33 Duty	External Display Clock	External Display Clock (f _{CL})	$f_{CL}/200$
1/53 Duty	Internal Oscillator Circuit	f _{OSC} /8	f _{OSC} /4/53
1/33 Duty	External Display Clock	External Display Clock (f _{CL})	f _{CL} /212

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 12/49 http://www.i-core.cn P.C.: 214072 VER:2019-12-B1

Wuxi I-CORE Electronics Co., Ltd. Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

3.2.2. AC Characteristics (T_{amb}=-40~+85°C, VDD=3.0V, VSS=0V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
VDD=2.7V,T _{amb} =25°C				- 3 P		
Address hold time	t _{AH8} , t _{AH6}		0	-	-	ns
Address setup time	t _{AW8} , t _{AW6}	A0,FIG 1、2	0	-	-	ns
System cycle time	t _{CYC8} , t _{CYC6}		400	-	-	ns
Enable L pulse width (WRITE)	t _{CCLW} , tew _{LW}	/WR(E),FIG 1、2	220	-	-	ns
Enable H pulse width (WRITE)	t _{CCHW} , tew _{HW}		180	-	-	ns
Enable L pulse width (READ)	t _{CCLR} , tew _{LR}	DD(E) FIG 1 2	220	-	-	ns
Enable H pulse width (READ)	t _{CCHR} , tew _{HR}	RD(E),FIG 1、2	180	-	-	ns
WRITE Data setup time	t _{DS8} 、t _{DS6}		40	-	-	ns
WRITE Address hold time	t _{DH8} 、t _{DH6}	D0 to D7 $C_L=100pF$	0	-	-	ns
READ access time	t _{ACC8} , t _{ACC6}	FIG 1, 2	-	-	140	ns
READ Output disable time	t _{OH8} 、t _{OH6}	11017	10	-	100	ns
4-line SPI Clock Period	t_{SCYC}		100	-	-	ns
SCL "H" pulse width	$t_{ m SHW}$	SCL,FIG 3	50	-	-	ns
SCL "L" pulse width	t _{SLW}		50	-	-	ns
Address setup time	t_{SAS}	A0,FIG 3	30	-	-	ns
Address hold time	t _{SAH}	AU,FIG 3	20	-	-	ns
Data setup time	$t_{ m SDS}$	SI,FIG 3	30	-	-	ns
Data hold time	t_{SDH}	Si,FiG 5	20	-	-	ns
CS-SCL time	t_{CCSS}	CS,FIG 3	30	-	-	ns
	t _{CSH}	•	60	-	-	ns
Reset time	t_{R}	FIG 4	-	-	2.0	us
Reset "L" pulse width	t_{RW}	/RES,FIG 4	2.0	-	-	us
VDD=3.3V,T _{amb} =25°C						
Address hold time	t_{AH8} , t_{AH6}	A0,FIG 1、2	0	-	-	ns
Address setup time	t_{AW8} , t_{AW6}	710,110 11 2	0	-	1	ns
System cycle time	t_{CYC8} , t_{CYC6}		240	-	-	ns
Enable L pulse width (WRITE)	t_{CCLW} , tew_{LW}	WR(E),FIG 1、2	80	-	-	ns
Enable H pulse width (WRITE)	t _{CCHW} , tew _{HW}		80	-	-	ns
Enable L pulse width (READ)	t_{CCLR} , tew_{LR}	RD(E),FIG 1、2	80	-	1	ns
Enable H pulse width (READ)	t_{CCHR} , tew_{HR}	KD(E),110 1 2	140	-	ı	ns
WRITE Data setup time	t_{DS8} 、 t_{DS6}	D0 to D7	40	-	ı	ns
WRITE Address hold time	t_{DH8} , t_{DH6}	$C_L=100 pF$	0	-	-	ns
READ access time	t _{ACC8} , t _{ACC6}	FIG 1 \ 2	-	-	70	ns
READ Output disable time	t _{OH8} 、t _{OH6}		5	-	50	ns
4-line SPI Clock Period	t_{SCYC}		50	-	-	ns
SCL "H" pulse width	$t_{ m SHW}$	SCL,FIG 3	25	-	-	ns
SCL "L" pulse width	$t_{\rm SLW}$		25	-	-	ns

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province http://www.i-core. cn P.C.: 214072

Wuxi I-CORE Electronics Co., Ltd. ab:835-12 rev:B3 Number:AiP31565

Tab:835-12

Number: AiP31565CR-AX-XS-A040EN

Address setup time	t_{SAS}	A0,FIG 3	20	-	-	ns
Address hold time	t_{SAH}	A0,F1G 3	10	-	-	ns
Data setup time	$t_{ m SDS}$	SI,FIG 3	20	-	-	ns
Data hold time	t _{SDH}	51,110 5	10	-	-	ns
CS-SCL time	t _{CCSS}	CS,FIG 3	20	-	-	ns
C5-SCL time	t_{CSH}	C5,F1G 5	40	-	-	ns
Reset time	t_R	FIG 4	-	-	1.0	us
Reset "L" pulse width	t_{RW}	/RES,FIG 4	1.0	-	-	us

4. Testing Circuit

4.1. AC Testing Circuit

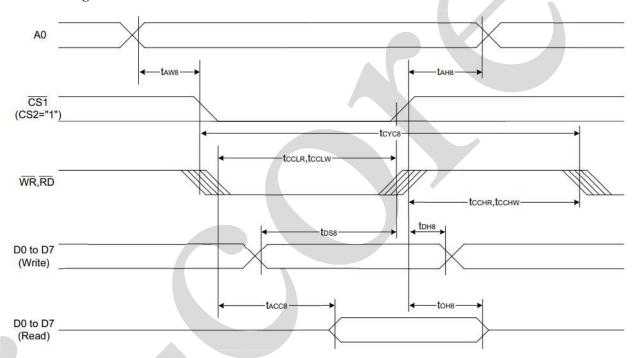


FIG 1、8080MPU

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 14/49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Tab:835-12

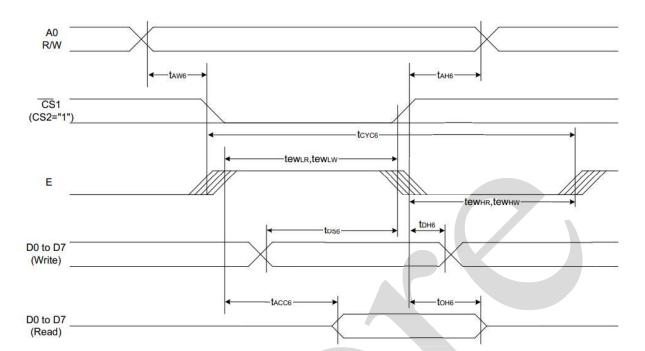


FIG 2、6800MPU

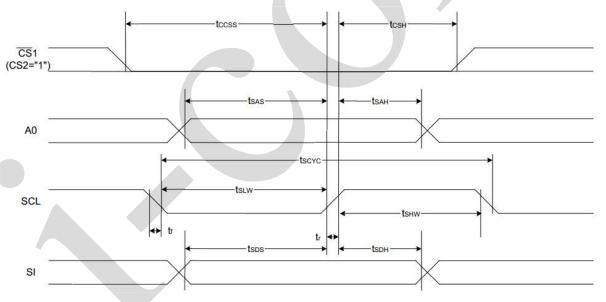


FIG 3, 4-Line Serial Interface

Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

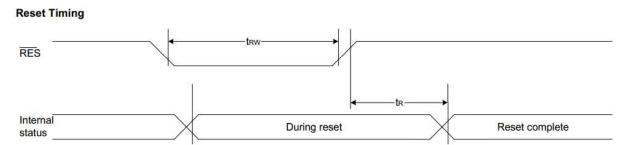


FIG 4. Reset Timing

5. Function Description

5.1, Microprocessor Interface

5.1.1. Chip Select Input

 $\overline{\text{CS1}}$ and CS2 pins are used for chip selection. When $\overline{\text{CS1}}$ ="L" and CS2="H", the microprocessor interface is enabled and AiP31565CR can interface with an MPU.When $\overline{\text{CS1}}$ ="H" or CS2="L", the inputs of A0, E(/RD) and R/W(/WR) with any combination will be ignored and D7~D0 are high impedance. In 4-Line serial interface, the internal shift register and serial counter are reset when $\overline{\text{CS1}}$ ="H" or CS2="L".

5.1.2, MCU Interface Selection

The interface selection is controlled by C86 and P/S pins. The selection for parallel or serial interface is shown in Table 1.

P/S CS2 R/W(/WR) D7~D0 **MPU Interface C86** $\mathbf{A0}$ E(/RD) CS₁ 6800-series parallel "H" "H" E R/W interface D0~D7 8080-series parallel "H" "L" CS2 A0 CS₁ /RD /WR interface Refer to serial 4-Line SPI "X" "L" interface. interface

Table 1. Parallel/Serial Interface Mode

Note: The un-used pins are marked as "-" and should be fixed to "H" by VDD.

5.1.3 Parallel Interface

When P/S= "H", the 8-bit bi-directional parallel interface is enabled and the type of MPU is selected by "C86" pin as shown in Table 2. The data transfer type is determined by signals on A0, E(/RD) and R/W(/WR) as shown in Table 3.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 16/49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

Table 2. Microprocessor Selection for Parallel Interface

P/S	C86	CS1	CS2	A0	E(/RD)	R/W(/WR)	D0~D7	MPU Interface
"H"	"H"	CS1	CS2	A0	Е	E R/W D7~D0	6800-series parallel interface	
	"L"	CSI		/RD	/WR	<i>D</i> /~ D 0	8080-series parallel interface	

Table 3. Parallel Data Transfer Type

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
Co	mmon P	ins	6800-	Series	8080-	Series	D							
CS1	CS2	A0	Е	R/W	/RD	/WR	Description							
		"H"	"H"	"H"	"L"	"H"	Display data read out							
"L"	"H"	"H"	"H"	"L"	"H"	"L"	Display data write							
	11	"L"	"H"	"H"	"L"	"H"	Internal status read							
		"L"	"H"	"L"	"H"	"L"	Writes to internal register (instruction)							

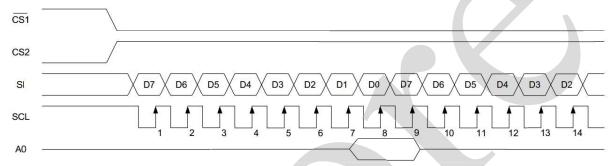
5.1.4. Setting Serial Interface

Serial Mode	P/S	C86	CS1	CS2	A0	E(/RD)	R/W(/WR)	D7	D6	D5~D0
4-Line SPI interface	"L"	X	CS1	CS2	A0	-		SI	SCL	-

Note: The un-used pins are marked as "-" and should be fixed to "H" by VDD.

C86 is marked as "X" and can be fixed to "H" or "L".

- 1. The option setting to be "H" should connect to VDD.
- 2. The option setting to be "L" should connect to VSS.

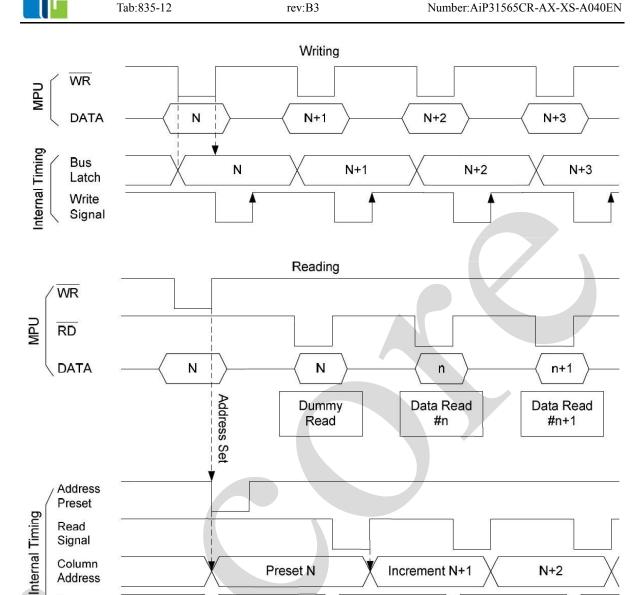

17/49

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

5.1.5, 4-line SPI interface (P/S="L", C86="H" or "L")

When AiP31565CR is active ($\overline{\text{CS1}}$ ="L" and $\overline{\text{CS2}}$ ="H"), serial data (SI) and serial clock (SCL) inputs are enabled. When AiP31565CR is not active ($\overline{\text{CS1}}$ ="H" or $\overline{\text{CS2}}$ ="L"), the internal 8-bit shift register and 3-bit counter are reset. Serial data on SI is latched at the rising edge of serial clock on SCL. After the 8th serial clock, the serial data will be processed to be 8-bit parallel data. The address selection pin (A0), which is latched at the 8th clock, indicates the 8-bit parallel data is display data or instruction. The 8-bit parallel data will be display data when A0 is "H" and will be instruction when A0 is "L". The read feature is not available in this mode. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Please note that the SCL signal quality is very important and external noise maybe causes unexpected data/instruction latch.



Note:

Some MPU will set the interface to be Hi-Z (high impedance) mode when power saving mode or after hardware reset. This is not allowed when the VDD of AIP31565CR is turned ON. Because the floating input (especially for those control pins such as $\overline{CS1}$, CS2, /RES, R/W(/WR) or E(/RD)...) maybe cause abnormal latch and cause abnormal display.

5.1.5 Data Transfer

AiP31565CR uses bus latch and internal data bus for interface data transfer. When writing data from MPU to the DDRAM, data is automatically transferred from the bus latch to the DDRAM. When reading data from the on-chip DDRAM to MPU, the first read cycle reads the content in bus latch (dummy read) and the data that MPU should read will be output at the next read cycle. That means: after setting the target address, a dummy read cycle is required before the following read-operation. Therefore, the data of the specified address cannot be read at the first read of display data right after setting the address, but can be read at the second read of display data.

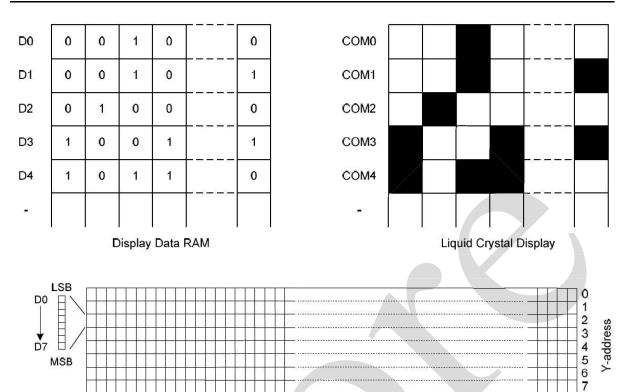
5.2. Display Data RAM (DDRAM)

Bus

Latch

AiP31565CR is built-in a RAM with 65×132 bit capacity which stores the display data. The display data RAM (DDRAM) store the dot data of the LCD. It is an addressable array with 132 columns by 65 rows (8-page with 8-bit and 1-page with 1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and column addresses are specified. The rows are divided into: 8 pages (Page-0~Page-7) each with 8 lines (for COM0~63) and Page-8 with only 1 line (COMS, for icon). The display data (D7~D0) corresponds to the LCD common-line direction and D0 is on top. All pages can be accessed through D7~D0 directly except icon page. Icon RAM uses only 1-bit of data bus (D0). The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer. Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being displayed without causing the LCD flicker or data-conflict.

n


n+1

N

n+2

Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

5.3, Addressing

1-bit ICON

Data is downloaded into the Display Data RAM matrix in AiP31565CR as byte-format. The Display Data RAM has a matrix of 65 by 132 bits. The address ranges are: $X=0\sim131$ (column address), $Y=0\sim8$ (page address). Addresses outside these ranges are not allowed.

X-address

8

131

5.3.1 Page Address Circuit

This circuit provides the page address of DDRAM.It incorporates 4-bit Page Address Register which can be modified by the "Page Address Set" instruction only. The Page Address must be set before accessing DDRAM content. Page Address "8" is a special RAM area for the icons with only one valid bit:D0.

5.3.2 Column Address Circuit

The column address of DDRAM is specified by the Column Address Set command. The column address is increased (+1) after each display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address "83h") because the Column Address and Page Address circuits are independent. For example, both Page Address and Column Address should be assigned for changing the DDRAM pointer from (Page-0, Column-83h) to (Page-1, Column-0). Furthermore, Register MX and MY makes it possible to invert the relationship between the DDRAM and the outputs (COM/SEG). It is necessary to rewrite the display data into DDRAM after changing MX setting.

Address: Building B4,NO.777, Jianzhu Road, Binhu District, Wuxi City, Jiangsu Province 20/49 http://www.i-core.cn P.C.: 214072 VER:2019-12-B1

Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

5.3.3 Line Address Circuit

The Line Address Circuit incorporates a counter and a Line Address register which is changed only by the "Display Start Line Set" instruction. This circuit assigns DDRAM a Line Address corresponding to the first display line (COM0). Therefore, by setting Line Address repeatedly, AiP31565CR can realize the screen scrolling without changing the contents of DDRAM. The last common is always the COMS (common output for the icons). That means the icons will never scroll with the general display data.

5.4. Display Data Latch Circuit

The display data latch circuit latches temporarily display data of each segment output which will be output at the next clock. The special functions such as reverse display, display OFF and display all points ON only change the data in the latch and the content in the Display Data RAM is not changed.

5.5 Socillation Circuit

The built-in oscillation circuit generates the system clock for the liquid crystal driving circuit. The oscillation circuit is enabled after initializing AiP31565CR. The clock will not be output to reduce the power consumption.

5.6. Liquid Crystal Driver Power Circuit

The built-in power circuits generate the voltage levels which are necessary to drive the liquid crystal. The built-in power system has voltage booster, voltage regulator and voltage follower circuits. The functionality of voltage booster, voltage regulator and voltage follower circuits can be turned ON and OFF individually. AiP31565CR is possible to use built-in power circuit and external power supply through the command "Power Control Set". The relationship of command setting and power using is shown below. Before power AiP31565CR OFF, a Power OFF procedure is needed (please refer to the OPERATION FLOW section).

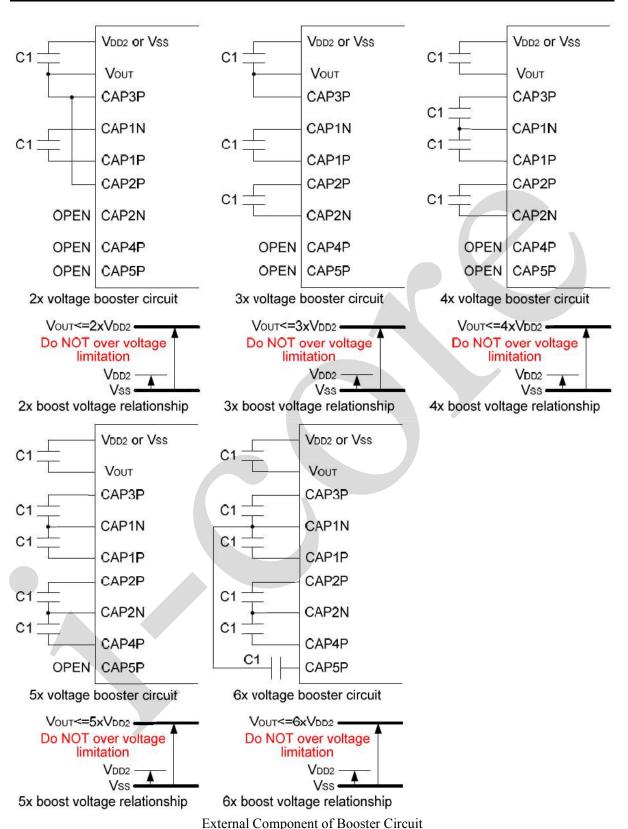
	Power ntrol (I	Built-in Circu	uit		Power Supply						
VB	VR	VF	Booster Regulator Follower		VOUT	V0	V1	V2	V3	V4			
1	1	1	ON	ON	ON	Internal	Internal	Internal	Internal	Internal	Internal		
0	1	1	OFF	ON	ON	External	Internal	Internal	Internal	Internal	Internal		
0	0	1	OFF	OFF	ON	External	External	Internal	Internal	Internal	Internal		
0	0	0	OFF OFF OFF		External	External	External	External	External	External			

5.6.1 Booster Circuit

Base on VDD2-VSS,AiP31565CR is able to product step-up voltages of ×2,×3,×4,×5 and ×6 through hardware and software setting.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

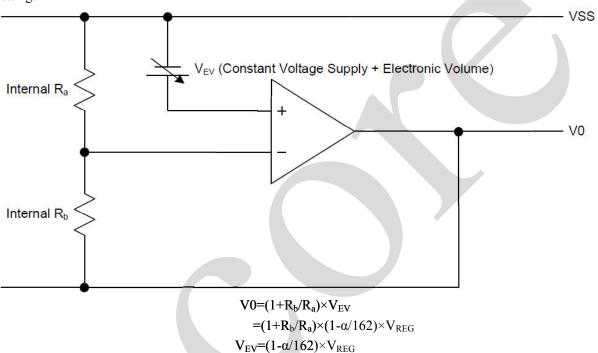
http://www.i-core.cn


P.C.: 214072

VER:2019-12-B1

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN


Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

5.6.2, Regulator Circuit

AiP31565CR provides two kinds power supply for LCD driving voltage V0. Built-in regulator circuit or external power supply for V0 is available for LCD driving. The built-in high accuracy regulation circuit has 8 regulation ratios and each one has 64 EV-levels for voltage adjustment. Without additional external component, the output voltage can be changed by instructions such as "Regulation Ratio" and "Set EV". The detailed setting method can be found in the Instruction Description section.

• Built-in Resistor Is Used For Regulator Circuit

The internal regulator circuit can be controlled by built-in regulation ratio and the electronic volume setting.

ıb:835-12 rev:B3

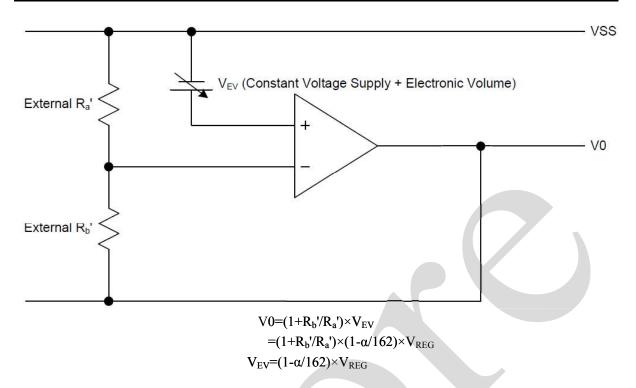
Number: AiP31565CR-AX-XS-A040EN

 V_{REG} is built-in constant voltage supply for regulator circuit. The voltage level of V_{REG} is 2.1V at temperature 25°C. α is determined by command "Set EV". Base on command "Set EV", the relationship between EV5~EV0 and α is shown below.

EV5	EV4	EV3	EV2	EV1	EV0	α
0	0	0	0	0	0	63
0	0	0	0	0	1	62
0	0	0	0	1	0	61
0	0	0	0	1	1	60
	•••	•••		•••		
1	1	1	1	0	0	3
1	1	1	1	0	1	2
1	1	1	1	1	0	1
1	1	1	1	1	1	0

 $(1+R_b/R_a)$ is internal regulation ratio for regulator circuit. The relationship between regulation ratio and RR2~RR0 is shown below.

RR2	RR1	RR0	$1+R_b/R_a$
0	0	0	3.0
0	0	1	3.5
0	1	0	4.0
0	1	1	4.5
1	0	0	5.0
1	0	1	5.5
1	1	0	6.0
1	1	1	6.5


• External Resistor Is Used For Regulator Circuit

Through hardware setting IRS="L" and external resistor, AiP31565CR is able to use external regulation ratio to control the voltage level of V0.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

The setting condition of AiP31565CR for external regulation ratio is V0=8.0V, α =31 and V_{REG}=2.1V. The current consumption through R_a' and R_b' is limited to 5uA. Base on above condition, the relationship of R_a' and R_b' is R_a'+R_b'=1.6M Ω .

$$V0=(1+R_b'/R_a')\times(1-\alpha/162)\times V_{REG}$$
 (1.1)

$$8V=(1+R_b'/R_a')\times(1-31/162)\times 2.1$$
 (1.2)

$$R_a' + R_b' = 1.6M\Omega \tag{1.3}$$

According to equation (1.2) and (1.3)

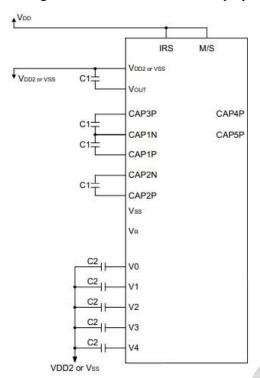
$$R_{b}'/R_{a}'=3.71$$

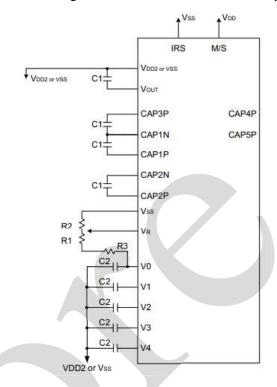
 $R_{a}'=340k\Omega$
 $R_{b}'=1260k\Omega$

5.6.3 High Power Mode

AiP31565CR has two kinds of power mode for driving LCD. When /HPM pin is connected to "H" by VDD,AiP31565CR will enter normal power mode. Normal power mode has lower power consumption for driving. If the panel loading or size is larger,normal power mode may cause display quality to reduce. For improve display quality,AiP31565CR provides high power mode through connect /HPM pin to "L" by VSS.I-CORE recommends that whether using high power mode or normal power mode is determined by actually display quality. Besides, if improvement is unsatisfactory after using high power mode, external power supply for LCD driving is necessary.

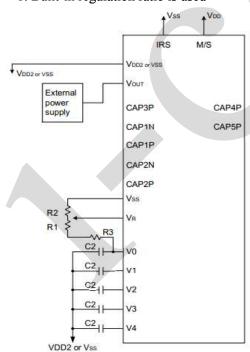
5.6.4, Power System Set

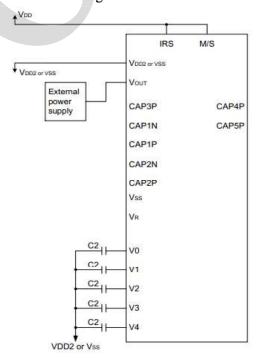

The following sections illustrate the connection of typical application.


• Built-in Booster, Regulator and Follower Circuit are used

p:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN


1.Built-in regulation ratio is used with ×4 step-up 2. Built-in regulation ratio is not used with ×4 step-up



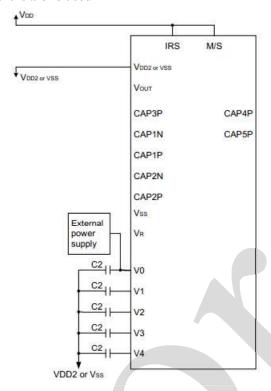
• Built-in Regulator and Follower Circuit are alone used

1. Built-in regulation ratio is used

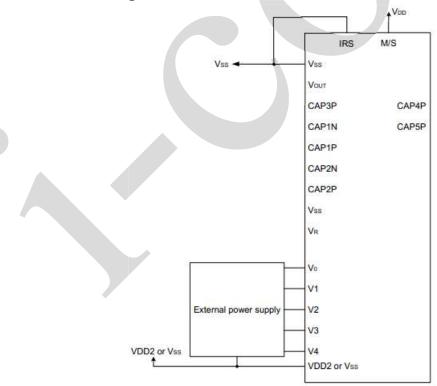
2. Built-in regulation ratio is not used

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

26/ 49


http://www.i-core. cn

P.C.: 214072


VER:2019-12-B1

rev:B3 Number:AiP31565CR-AX-XS-A040EN

Built-in Follower Circuit is alone used

Built-in Booster, Regulator and Follower Circuit are not used

27/49 Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province P.C.: 214072 VER:2019-12-B1 http://www.i-core.cn

ab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

The optimum values of C1 and C2 are determined by panel loading and actually display quality. The values of capacitor should be determined by user. User should check display quality of used pattern and power stability after capacitor value is determined. The following table is a quick reference for the initial setting.

Symbol	Туре	Reference Value (uF)
C1	Capacitor for step-up and LCD voltage stabilization	1.0 ~ 4.7
C2	Capacitor for LCD voltage stabilization	0.1~ 4.7

5.7、Reset Circuit

Setting /RES to "L" can initialize internal function. While /RES is "L", no instruction except read status can be accepted./RES pin must connect to the reset pin of MPU and initialization by /RES pin is essential before operating. Please note the hardware reset is not same as the software reset. When /RES becomes "L", the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below:

Procedure	Hardware Reset	Software Reset
Display OFF:D=0, all SEGs/COMs output at VSS	V	X
Normal Display:INV=0, AP=0	V	X
SEG Normal Direction:MX=0	V	X
Clear Serial Counter and Shift Register (if using Serial Interface)	V	X
Bias Selection:BS=0	V	X
Booster Level BL=0	V	X
Exit Power Saving Mode	V	X
Power Control OFF: VB=0, VR=0, VF=0	V	X
Exit Read-modify-Write mode	V	V
Static Indicator OFF	V	V
Static Indicator Register SIR[1:0]=(0,0)	V	V
Start Line S[5:0]=0	V	V
Column Address X[7:0]=0	V	V
Page Address Y[3:0]=0	V	V
COM Normal Direction: MY=0	V	V
V0 Regulation Ratio RR[2:0]=(1,0,0)	V	V
EV[5:0]=(1,0,0,0,0,0)	V	V
Exit Test Mode	V	V

After power-on, RAM data are undefined and the display status is "Display OFF". It's better to initialize whole DDRAM (ex:fill all 00h or write the display pattern) before turning the Display ON. Besides, the power is not stable at the time that the power is just turned ON. A hardware reset is needed to initialize those internal registers after the power is stable.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1

Wuxi I-CORE Electronics Co., Ltd. ab:835-12 rev:B3 Number:AiP31565

Number: AiP31565CR-AX-XS-A040EN

5.8, Instruction Table

		on Table			(omman	d Byte				
Instruction	A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0	Description
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=1, display ON D=0, display OFF
Set Start Line	0	0	0	1	S5	S4	S3	S2	S1	S0	Set display start line
Set Page Address	0	0	1	0	1	1	Y3	Y2	Y1	Y0	Set page address
Set Column	0	0	0	0	0	1	X7	X6	X5	X4	Set column address (MSB)
Address	0	0	0	0	0	0	X3	X2	X1	X0	Set column address (LSB)
Read Status	0	1	BUSY	MX	D	RST	0	0	0	0	Read IC Status
Write Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write display data to RAM
Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read display data from RAM
SEG Direction	0	0	1	0	1	0	0	0	0	MX	Set scan direction of SEG MX=1, reverse direction MX=0, normal direction
Inverse Display	0	0	1	0	1	0	0	1	1	INV	INV =1, inverse display INV =0, normal display
All Pixel ON	0	0	1	0	1	0	0	1	0	AP	AP=1, set all pixel ON AP=0, normal display
Bias Select	0	0	1	0	1	0	0	0	1	BS	Select bias setting 0=1/9; 1=1/7 (at 1/65 duty)
Read-modify- Write	0	0	1	1	1	0	0	0	0	0	Column address increment: Read:+0 , Write:+1
END	0	0	1	1	1	0	1	1	1	0	Exit Read-modify-Write mode

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN 1 1 0 0 RESET 0 0 1 0 Software reset Set output direction of COM MY=1, reverse 0 0 0 **COM Direction** 1 0 MY direction MY=0, normal direction Control built-in VF Power Control 0 0 0 0 1 0 1 VB VR power circuit ON/OFF Regulation Select regulation 0 0 RR2 0 0 1 0 0 RR1 RR0 resistor ratio Ratio Double command!! 0 0 1 0 0 0 0 0 0 1 Set Set EV electronic volume 0 0 0 EV3 EV2 EV1 EV0 0 EV5 EV4 (EV) level 0 0 1 0 1 0 1 1 0 MD Power Save MD=0, sleep mode Mode Set MD=1, normal 0 0 0 0 0 0 0 0 0 Display OFF + All Power Save **Compound Command** 0 0 Pixel ON

0

0

0

0

BL1

1

0

BL0

1

1

0

0

Double command!!

Set booster level: $BL[1:0]=(0,0),\times 2,\times 3$

 $BL[1:0]=(0,1),\times 5$ $BL[1:0]=(1,1),\times 6$

Reserved for testing.

No operation Do NOT use.

,×4

Note: Symbol "-" means this bit can be "H" or "L".

5.9, Instruction Description

Display ON/OFF

0

0

0

0

Set Booster

NOP

Test

0

0

0

0

1

0

1.

1

0

1

1

0

1

1

1

0

0

1

The D flag selects the display mode.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	1	1	0

Note:

D=1: Normal Display Mode.

D=0: Display OFF. All SEGs/COMs output with VSS.

ıb:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

• Set Start Line

This instruction sets the line address of the Display Data RAM to determine the initial display line. The display data of the specified line address is displayed at the top row (COM0) of the LCD panel.

	A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Ī	0	0	0	1	S5	S4	S3	S2	S1	S0

S5	S4	S3	S2	S1	S0	Line address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	3
	•••	•••	•••	•••		
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

• Set Page Address

Y [3:0] defines the Y address vector address of the display RAM.

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	<u>Y</u> 3	Y2	Y1	Y0

Y3	Y2	Y1	Y0	Page address	Valid bit
0	0	0	0	Page0	D0~D7
0	0	0	1	Page1	D0~D7
0	0	1	0	Page2	D0~D7
	•••				•••
0	1	1	0	Page6	D0~D7
0	1	1	1	Page7	D0~D7
1	0	0	0	Page8 (icon page)	D0

• Set Column Address

The range of column address is 0...131. The parameter is separated into 2 instructions. The column address is increased (+1) after each byte of display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address "83h").

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	X7	X6	X5	X4

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	X3	X2	X1	X0

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1

p:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

X7	X6	X5	X4	X3	X2	X1	X0	Column address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
				•••			•••	•••
1	0	0	0	0	0	0	1	129
1	0	0	0	0	0	1	0	130
1	0	0	0	0	0	1	1	131

Read Status

Read the internal status of AiP31565CR. The read function is not available in serial interface mode.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	BUSY	MX	0	RST	0	0	0	0

Flag	Description
BUSY	BUSY=0: Command can be accepted
BUSI	BUSY=1: Command or reset procedure is executed
MX	MX=0: Reverse direction (SEG131->SEG0)
IVIA	MX=1: Normal direction (SEG0->SEG131)
D	D=0: Display ON
D	D=1: Display OFF
DCT	RST=1: During reset (hardware or software reset)
RST	RST=0: Normal operation

Write Data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
1	0				Write	Data			

Read Data

8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor. The read function is not available in serial interface mode.

A0	R/W	D 7	D6	D5	D4	D3	D2	D 1	D 0
1	1				Read	Data			

SEG Direction

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	0	MX

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1

Tab:835-12 rev:B3

Number:AiP31565CR-AX-XS-A040EN

Flag	Description
MX	MX=0: Normal direction (SEG0->SEG131)
IVIA	MX=1: Reverse direction (SEG131->SEG0)

• Inverse Display

This instruction changes the selected and non-selected voltage of SEG. The display will be inversed (white ->Black, Black->White) while the display data in the Display Data RAM is never changed.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	1	1	INV

Flag	Description	
INV	INV=0: Normal display	
IINV	INV=1: Inverse display	

• All Pixel ON

This instruction will let all segments output the selected voltage and make all pixels turned ON.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	1	0	AP

Flag		Description	*
AP	AP=0: Normal display		
Ar	AP=1: All pixels ON		

Bias Select

Select LCD bias ratio of the voltage required for driving the LCD.

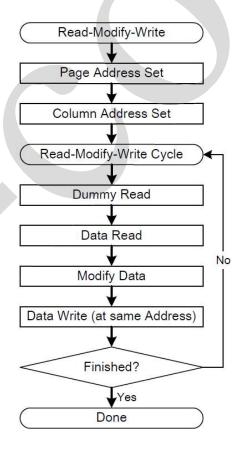
A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	1	BS

Duty	Bias				
Duty	BS=0	BS=1			
1/65	1/9	1/7			
1/49	1/8	1/6			
1/33	1/6	1/5			
1/55	1/8	1/6			
1/53	1/8	1/6			

Tab:835-12 rev:B

Number: AiP31565CR-AX-XS-A040EN

Reference LCD Bias Voltage (1/65 Duty with 1/9 Bias)


Symbol	Bias Voltage
V0	V0
V1	8/9×V0
V2	7/9×V0
V3	2/9×V0
V4	1/9×V0
VSS	VSS

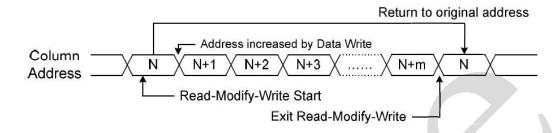
• Read-modify-Write

This command is used paired with the "END" instruction. Once this command has been input, the display data read operation will not change the column address, but only the display data write operation will increase the column address (X[7:0]+1). This mode is maintained until the END command is input. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as a blanking cursor.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	0	0	0	0

Note: In Read-modify-Write mode, other instructions aside from display data read/write commands can also be used.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER:2019-12-B1



Tab:835-12 rev:B3 Number:AiP31565CR-AX-XS-A040EN

END

When the END command is input, the Read-modify-Write mode is released and the column address returns to the address it was when the Read-modify-Write instruction was entered.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	1	1	1	0

RESET

This instruction resets Start Line (S[5:0]), Column Address (X[7:0]), Page Address (Y[3:0]) and COM Direction (MY) to their default setting. Please note this instruction is not complete same as hardware reset (/RES=L) and cannot initialize the built-in power circuit which is initialized by the /RES pin. The detailed information is in "Section RESET CIRCUIT".

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	0	0	1	0

COM Direction

This instruction controls the common output status which changes the vertical display direction.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	MY	-	-	-

Flag	Description
MY	MY=0: Normal direction (COM0->COM63)
IVI I	MY=1: Reverse direction (COM63->COM0)

Power Control

This instruction controls the built-in power circuits. Typically, these 3 flags are turned ON at the same time.

	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Ī	0	0	0	0	1	0	1	VB	VR	VF

Flag	Description				
VB	VB=0: Built-in Booster OFF				
VB	VB=1: Built-in Booster ON				
VR	VR=0: Built-in Regulator OFF				
VK	VR=1: Built-in Regulator ON				
VF	VF=0: Built-in Follower OFF				
VΓ	VF=1: Built-in Follower ON				

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

http://www.i-core. cn

P.C.: 214072

VER:2019-12-B1

ab:835-12 rev:B3

Number:AiP31565CR-AX-XS-A040EN

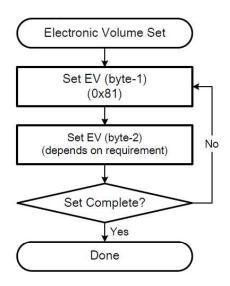
• Regulation Ratio

This instruction controls the regulation ratio of the built-in regulator.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	RR2	RR1	RR0

RR2	RR1	RR0	Regulation Ratio (RR)
0	0	0	3.0
0	0	1	3.5
0	1	0	4.0
0	1	1	4.5
1	0	0	5.0
1	0	1	5.5
1	1	0	6.0
1	1	1	6.5

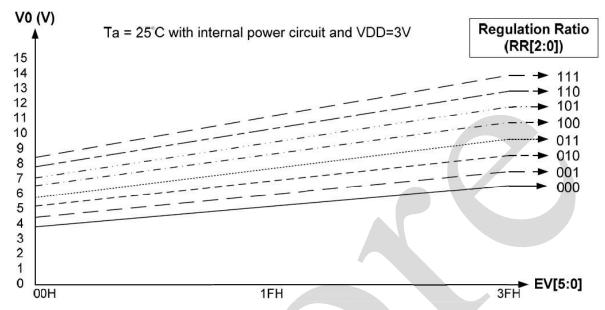
The operation voltage (V0) calculation formula is shown below:(RR comes from Regulation Ratio, EV comes from EV[5:0])


 $V0=RR\times[1-(63-EV)/162]\times2.1$, or $V0=RR\times[(99+EV)/162]\times2.1$

Symbol	Register	Value		
RR	RR2~RR0	3.0,3.5,4.0,4.5,5.0,5.5,6.0 and 6.5		
EV	EV5~RV0	0~63		

Set EV

This is double byte instruction. The first byte set AiP31565CR into EV adjust mode and the following instruction will change the EV setting. That means these 2 bytes must be used together. They control the electronic volume to adjust a suitable V0 voltage for the LCD.


A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	0	0	0	0	0	1
0	0	0	0	EV5	EV4	EV3	EV2	EV1	EV0

Гаb:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

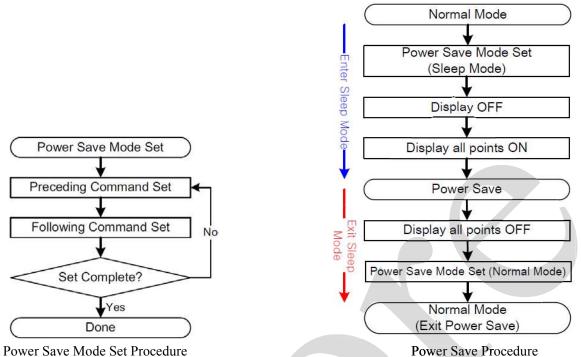
The maximum voltage that can be generated is dependent on the VDD2 voltage and the loading of LCD module. There are 8 V0 voltage curve can be selected. It is recommended the EV should be close to the center (1FH) for easy contrast adjustment. Please refer to the "Selection of Application Voltage" section for detailed information.

Power Save Mode Set

This is double byte instruction to set power save mode. This instruction used to set mode of power save only. AiP31565CR can not enter sleep mode after this instruction is executed.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	1	0	MD
0	0	0	0	0	0	0	0	0	0

Flag	Description
MD	MD=0: Sleep Mode
MID	MD=1: Normal Mode


• Power Save (Compound Instruction)

This is compound instruction. The 1st instruction is Display OFF (D=0) and the 2nd instruction is All Pixel ON (AP=1). The Power Save mode starts the following procedure: (the display data and register settings are still kept except D-Flag and AP-Flag)

- 1. Stops internal oscillation circuit;
- 2. Stops the built-in power circuits;
- 3. Stops the LCD driving circuits and keeps the common and segment outputs at VSS.

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

After exiting Power Save, the settings will return to be as they were before.

• Set Booster

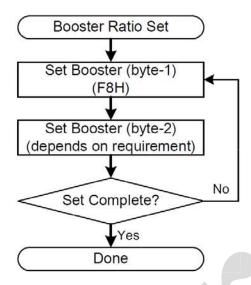
This is double byte instruction. The first byte set AiP31565CR into booster configuration mode and the following instruction will change the booster setting. That means these 2 bytes must be used together. They control the built-in booster circuit to provide the power source of the built-in regulator. Hardware connection should be changed according to booster level setting. If the hardware connection and software setting is not corresponding, AiP31565CR will cause extra power consumption. AiP31565CR will not damage through the extra power consumption.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	BL1	BL0

BL1	BL0	Boost Level
0	0	×2,×3,×4
0	1	×5
1	1	×6

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

http://www.i-core. cn


P.C.: 214072

VER:2019-12-B1

Tab:835-12

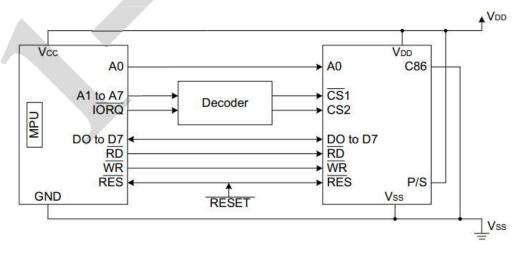
rev:B3

Number: AiP31565CR-AX-XS-A040EN

NOP

"No Operation" instruction. AiP31565CR will do nothing when receiving this instruction.

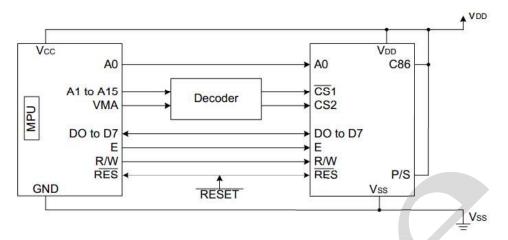
A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	0	0	1	1

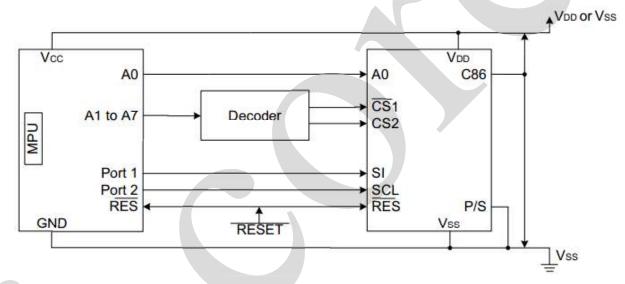

Test

The test mode is reserved for IC testing. Please don't use this instruction. If the test mode is enabled accidentally, it can be cleared by: issuing an "L" pulse on /RES pin, issuing RESET instruction or issuing NOP instruction.

A0	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	1	-	-	-	-

Note: "-" means "1" or "0".


5.10 The MPU Interface


8080 Series MPUs

Tab:835-12

Number: AiP31565CR-AX-XS-A040EN

6800 Series MPUs



Using the 4-line SPI Interface

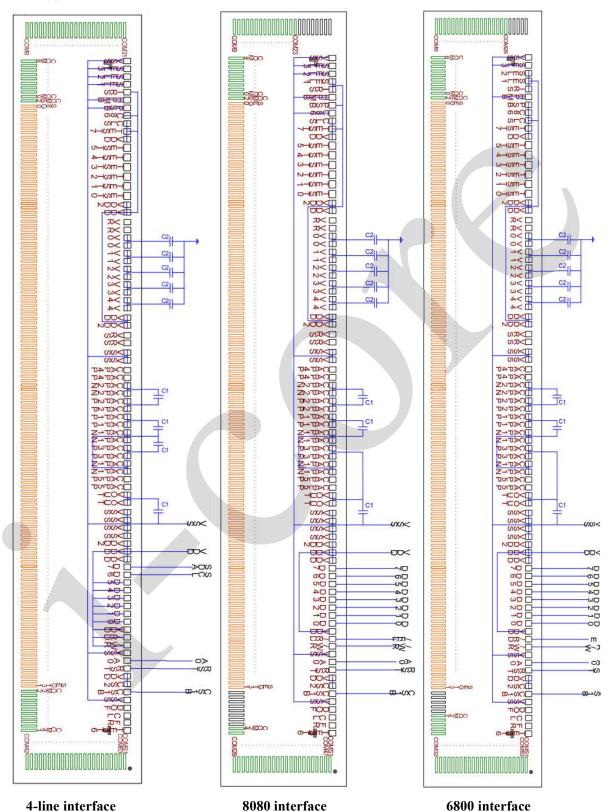
Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 40/49 http://www.i-core. cn P.C.: 214072 VER:2019-12-B1

Tab:835-12

Number: AiP31565CR-AX-XS-A040EN

Connections Between LCD Drivers

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 41/49 P.C.: 214072 VER:2019-12-B1 http://www.i-core. cn



rev:B3

Number: AiP31565CR-AX-XS-A040EN

6. Typical Application Circuit And Application Note

6.1, Application Circuits

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

7. Recommend LCD Setting

Item	Set value	unit
C1	1 ~ 2.2	uF
C2	0.1~ 1	uF

Recommend Setting:

VDD = VDD2 = 3.0V

Booster = X3

BIAS = 1/6

Vop = 5.5~6.7V

Duty = 1/33

Recommend Setting:

VDD = VDD2 = 3.0V

Booster = X3

BIAS = 1/5

Vop = 5.0~6.1V

Duty = 1/33

Item	Set value	unit
C1	1 ~ 2.2	uF
C2	0.1~ 1	uF

Recommend Setting 1:

VDD = VDD2 = 3.0V

Booster = X3

BIAS = 1/6

 $Vop = 6.0 \sim 7.0 V$

Duty = 1/49

Recommend Setting 2:

VDD = VDD2 = 3.0V

Booster = X4

BIAS = 1/8

Vop = 7.0~8.5V

Duty = 1/49

Item	Set value	unit
C1	1 ~ 2.2	uF
C2	0.1~ 1	uF

Recommend Setting 1:

VDD = VDD2 = 3.0V

Booster = X3

BIAS = 1/6

 $Vop = 6.0 \sim 7.5V$

Duty = 1/55

Recommend Setting 2:

VDD = VDD2 = 3.0V

Booster = X4

BIAS = 1/8

 $Vop = 7.0 \sim 8.5V$

Duty = 1/55

Item	Set value	unit
C1	1 ~ 2.2	uF
C2	0.1~ 1	uF

Recommend Setting:

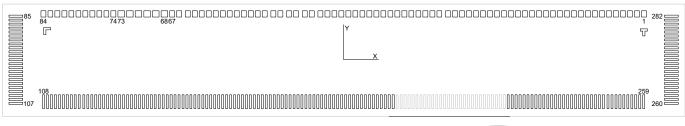
VDD = VDD2 = 3.0V

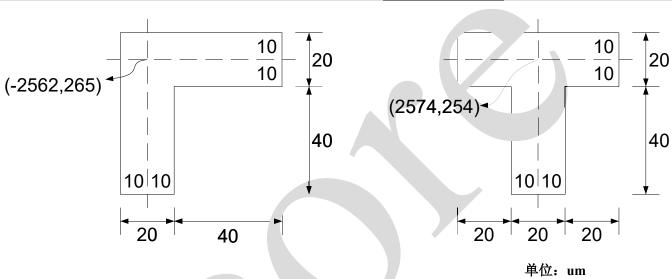
Booster = X4

BIAS = 1/7

 $Vop = 7.0 \sim 8.5V$

Duty = 1/65


rev:B3


Number:AiP31565CR-AX-XS-A040EN

44/49

8, PAD Diagram And PAD Location

8.1, PAD Diagram

PAD Size:

PAD NO.	PAD Size
001~067	42um×54um
068~073	56um×54um
074~084	42um×54um
085~282	17um×118um

Bump Pitch: 34um (Min.)

Bump Height: 9um

Chip Thickness: 480um

Chip Size: 5852um×962um

8.2, PAD Location

PAD No.	PAD Name	X	Y	PAD No.	PAD Name	X	Y
1	TEST[6]	2575	392	142	SEG[24]	-1411	-360
2	FR	2515	392	143	SEG[25]	-1377	-360

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province P.C.: 214072 VER:2019-12-B1 http://www.i-core. cn

3 CL 2455 392 144 SEG[26] -1343 -360 4 /DOF 2395 392 145 SEG[27] -1309 -360 5 VSS 2335 392 146 SEG[28] -1275 -360 6 CSI 2275 392 147 SEG[29] -1241 -360 7 CS2 2215 392 148 SEG[30] -1207 -360 8 VDD 2155 392 149 SEG[31] -1173 -360 9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 <t< th=""><th></th><th>140:050 12</th><th></th><th>101.13</th><th></th><th>1 (41110-01.7111-511</th><th>705 616 7121 7</th><th>is rio logiv</th></t<>		140:050 12		101.13		1 (41110-01.7111-511	705 616 7121 7	is rio logiv
5 VSS 2335 392 146 SEG[28] -1275 -360 6 CS1 2275 392 147 SEG[29] -1241 -360 7 CS2 2215 392 148 SEG[30] -1207 -360 8 VDD 2155 392 149 SEG[31] -1173 -360 9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[33] -1105 -360 11 VSS 1975 392 153 SEG[33] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[36] -1003 -360 13 /RD(E) 1855 392 155 SEG[37] -969 -360 14 VDD 1795 392 <	3	CL	2455	392	144	SEG[26]	-1343	-360
6 CS1 2275 392 147 SEG[29] -1241 -360 7 CS2 2215 392 148 SEG[30] -1207 -360 8 VDD 2155 392 149 SEG[31] -1173 -360 9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 <td< th=""><th>4</th><th>/DOF</th><th>2395</th><th>392</th><th>145</th><th>SEG[27]</th><th>-1309</th><th>-360</th></td<>	4	/DOF	2395	392	145	SEG[27]	-1309	-360
7 CS2 2215 392 148 SEG[30] -1207 -360 8 VDD 2155 392 149 SEG[31] -1173 -360 9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 158 SEG[40] -867 -360 18 D3 1555 392	5	VSS	2335	392	146	SEG[28]	-1275	-360
8 VDD 2155 392 149 SEG[31] -1173 -360 9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 1	6	CS1	2275	392	147	SEG[29]	-1241	-360
9 /RES 2095 392 150 SEG[32] -1139 -360 10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 160 SEG[42] -799 -360 20 D5 1435 392 16	7	CS2	2215	392	148	SEG[30]	-1207	-360
10 A0 2035 392 151 SEG[33] -1105 -360 11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 160 SEG[41] -833 -360 20 D5 1435 392 160 SEG[42] -799 -360 21 D6 1375 392 162<	8	VDD	2155	392	149	SEG[31]	-1173	-360
11 VSS 1975 392 152 SEG[34] -1071 -360 12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[44] -731 -360 21 D6 1375 392 163 </th <th>9</th> <th>/RES</th> <th>2095</th> <th>392</th> <th>150</th> <th>SEG[32]</th> <th>-1139</th> <th>-360</th>	9	/RES	2095	392	150	SEG[32]	-1139	-360
12 /WR(R/W) 1915 392 153 SEG[35] -1037 -360 13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 <th>10</th> <th>A0</th> <th>2035</th> <th>392</th> <th>151</th> <th>SEG[33]</th> <th>-1105</th> <th>-360</th>	10	A0	2035	392	151	SEG[33]	-1105	-360
13 /RD(E) 1855 392 154 SEG[36] -1003 -360 14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164	11	VSS	1975	392	152	SEG[34]	-1071	-360
14 VDD 1795 392 155 SEG[37] -969 -360 15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1135 392 165	12	/WR(R/W)	1915	392	153	SEG[35]	-1037	-360
15 D0 1735 392 156 SEG[38] -935 -360 16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166	13	/RD(E)	1855	392	154	SEG[36]	-1003	-360
16 D1 1675 392 157 SEG[39] -901 -360 17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167	14	VDD	1795	392	155	SEG[37]	-969	-360
17 D2 1615 392 158 SEG[40] -867 -360 18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168	15	D0	1735	392	156	SEG[38]	-935	-360
18 D3 1555 392 159 SEG[41] -833 -360 19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169	16	D1	1675	392	157	SEG[39]	-901	-360
19 D4 1495 392 160 SEG[42] -799 -360 20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	17	D2	1615	392	158	SEG[40]	-867	-360
20 D5 1435 392 161 SEG[43] -765 -360 21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	18	D3	1555	392	159	SEG[41]	-833	-360
21 D6 1375 392 162 SEG[44] -731 -360 22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	19	D4	1495	392	160	SEG[42]	-799	-360
22 D7 1315 392 163 SEG[45] -697 -360 23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	20	D5	1435	392	161	SEG[43]	-765	-360
23 VDD 1255 392 164 SEG[46] -663 -360 24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	21	D6	1375	392	162	SEG[44]	-731	-360
24 VDD2 1195 392 165 SEG[47] -629 -360 25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	22	D7	1315	392	163	SEG[45]	-697	-360
25 VDD2 1135 392 166 SEG[48] -595 -360 26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	23	VDD	1255	392	164	SEG[46]	-663	-360
26 VSS 1075 392 167 SEG[49] -561 -360 27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	24	VDD2	1195	392	165	SEG[47]	-629	-360
27 VSS 1015 392 168 SEG[50] -527 -360 28 VSS 955 392 169 SEG[51] -493 -360	25	VDD2	1135		166	SEG[48]	-595	-360
28 VSS 955 392 169 SEG[51] -493 -360	26	VSS	1075	392	167	SEG[49]	-561	-360
	27	VSS	1015	392	168	SEG[50]	-527	-360
	28			392	169		-493	
	29	VSS	895	392	170	SEG[52]	-459	-360
30 VOUT 821 392 171 SEG[53] -425 -360	30	VOUT	821	392	171	SEG[53]	-425	-360
31 VOUT 761 392 172 SEG[54] -391 -360	31	VOUT	II.	392	172		-391	-360
32 CAP5P 701 392 173 SEG[55] -357 -360	32	CAP5P	701	392	173		-357	-360
33 CAP5P 641 392 174 SEG[56] -323 -360								
34 CAPIN 581 392 175 SEG[57] -289 -360								
35 CAP1N 521 392 176 SEG[58] -255 -360	35	CAP1N	521	392	176		-255	-360
36 CAP3P 461 392 177 SEG[59] -221 -360								
37 CAP3P 401 392 178 SEG[60] -187 -360								
38 CAP1N 341 392 179 SEG[61] -153 -360								
39 CAP1N 281 392 180 SEG[62] -119 -360								
40 CAP1P 221 392 181 SEG[63] -85 -360								
41 CAP1P 161 392 182 SEG[64] -51 -360								
42 CAP2P 101 392 183 SEG[65] -17 -360								
43 CAP2P 41 392 184 SEG[66] 17 -360								
44 CAP2N -19 392 185 SEG[67] 51 -360	44	CAP2N	-19	392	185	SEG[67]	51	-360

	140.050 12		101.20		1 (dino din ni 5 fe		10 110 10211
45	CAP2N	-79	392	186	SEG[68]	85	-360
46	CAP4P	-139	392	187	SEG[69]	119	-360
47	CAP4P	-199	392	188	SEG[70]	153	-360
48	VSS	-273	392	189	SEG[71]	187	-360
49	VSS	-333	392	190	SEG[72]	221	-360
50	VRS	-408	392	191	SEG[73]	255	-360
51	VRS	-468	392	192	SEG[74]	289	-360
52	VDD2	-542	392	193	SEG[75]	323	-360
53	VDD	-602	392	194	SEG[76]	357	-360
54	V4	-676	392	195	SEG[77]	391	-360
55	V4	-736	392	196	SEG[78]	425	-360
56	V3	-796	392	197	SEG[79]	459	-360
57	V3	-856	392	198	SEG[80]	493	-360
58	V2	-916	392	199	SEG[81]	527	-360
59	V2	-976	392	200	SEG[82]	561	-360
60	V1	-1036	392	201	SEG[83]	595	-360
61	V1	-1096	392	202	SEG[84]	629	-360
62	V0	-1156	392	203	SEG[85]	663	-360
63	V0	-1216	392	204	SEG[86]	697	-360
64	VR	-1276	392	205	SEG[87]	731	-360
65	VR	-1336	392	206	SEG[88]	765	-360
66	VDD	-1410	392	207	SEG[89]	799	-360
67	VDD2	-1470	392	208	SEG[90]	833	-360
68	TEST[0]	-1537	392	209	SEG[91]	867	-360
69	TEST[1]	-1611	392	210	SEG[92]	901	-360
70	TEST[2]	-1685	392	211	SEG[93]	935	-360
71	TEST[3]	-1759	392	212	SEG[94]	969	-360
72	TEST[4]	-1833	392	213	SEG[95]	1003	-360
73	TEST[5]	-1907	392	214	SEG[96]	1037	-360
74	VDD	-1974	392	215	SEG[97]	1071	-360
75	TEST[7]	-2034	392	216	SEG[98]	1105	-360
76	CLS	-2094	392	217	SEG[99]	1139	-360
77	C86	-2154	392	218	SEG[100]	1173	-360
78	P/S	-2214	392	219	SEG[101]	1207	-360
79	/HPM	-2274	392	220	SEG[102]	1241	-360
80	IRS	-2334	392	221	SEG[103]	1275	-360
81	SEL1	-2394	392	222	SEG[104]	1309	-360
82	SEL2	-2454	392	223	SEG[105]	1343	-360
83	SEL3	-2514	392	224	SEG[106]	1377	-360
84	VSS	-2574	392	225	SEG[107]	1411	-360
85	COM[31]	-2810	373	226	SEG[108]	1445	-360
86	COM[30]	-2810	339	227	SEG[109]	1479	-360

87	COM[29]	-2810	305	228	SEG[110]	1513	-360
88	COM[28]	-2810	271	229	SEG[111]	1547	-360
89	COM[27]	-2810	237	230	SEG[112]	1581	-360
90	COM[26]	-2810	203	231	231 SEG[113]		-360
91	COM[25]	-2810	169	232	232 SEG[114]		-360
92	COM[24]	-2810	135	233	SEG[115]	1683	-360
93	COM[23]	-2810	101	234	SEG[116]	1717	-360
94	COM[22]	-2810	67	235	SEG[117]	1751	-360
95	COM[21]	-2810	33	236	SEG[118]	1785	-360
96	COM[20]	-2810	-1	237	SEG[119]	1819	-360
97	COM[19]	-2810	-35	238	SEG[120]	1853	-360
98	COM[18]	-2810	-69	239	SEG[121]	1887	-360
99	COM[17]	-2810	-103	240	SEG[122]	1921	-360
100	COM[16]	-2810	-137	241	SEG[123]	1955	-360
101	COM[15]	-2810	-171	242	SEG[124]	1989	-360
102	COM[14]	-2810	-205	243	SEG[125]	2023	-360
103	COM[13]	-2810	-239	244	SEG[126]	2057	-360
104	COM[12]	-2810	-273	245	SEG[127]	2091	-360
105	COM[11]	-2810	-307	246	SEG[128]	2125	-360
106	COM[10]	-2810	-341	247	SEG[129]	2159	-360
107	COM[9]	-2810	-375	248	SEG[130]	2193	-360
108	COM[8]	-2573	-360	249	SEG[131]	2227	-360
109	COM[7]	-2539	-360	250	COM[32]	2267	-360
110	COM[6]	-2505	-360	251	COM[33]	2301	-360
111	COM[5]	-2471	-360	252	COM[34]	2335	-360
112	COM[4]	-2437	-360	253	COM[35]	2369	-360
113	COM[3]	-2403	-360	254	COM[36]	2403	-360
114	COM[2]	-2369	-360	255	COM[37]	2437	-360
115	COM[1]	-2335	-360	256	COM[38]	2471	-360
116	COM[0]	-2301	-360	257	COM[39]	2505	-360
117	COMS2	-2267	-360	258	COM[40]	2539	-360
118	SEG[0]	-2227	-360	259	COM[41]	2573	-360
119	SEG[1]	-2193	-360	260	COM[42]	2810	-375
120	SEG[2]	-2159	-360	261	COM[43]	2810	-341
121	SEG[3]	-2125	-360	262	COM[44]	2810	-307
122	SEG[4]	-2091	-360	263	COM[45]	2810	-273
123	SEG[5]	-2057	-360	264	COM[46]	2810	-239
124	SEG[6]	-2023	-360	265	COM[47]	2810	-205
125	SEG[7]	-1989	-360	266	COM[48]	2810	-171
126	SEG[8]	-1955	-360	267	COM[49]	2810	-137
127	SEG[9]	-1921	-360	268	COM[50]	2810	-103
128	SEG[10]	-1887	-360	269	COM[51]	2810	-69

129	SEG[11]	-1853	-360	270	COM[52]	2810	-35
130	SEG[12]	-1819	-360	271	COM[53]	2810	-1
131	SEG[13]	-1785	-360	272	COM[54]	2810	33
132	SEG[14]	-1751	-360	273	COM[55]	2810	67
133	SEG[15]	-1717	-360	274	COM[56]	2810	101
134	SEG[16]	-1683	-360	275	COM[57]	2810	135
135	SEG[17]	-1649	-360	276	COM[58]	2810	169
136	SEG[18]	-1615	-360	277	COM[59]	2810	203
137	SEG[19]	-1581	-360	278	COM[60]	2810	237
138	SEG[20]	-1547	-360	279	COM[61]	2810	271
139	SEG[21]	-1513	-360	280	COM[62]	2810	305
140	SEG[22]	-1479	-360	281	COM[63]	2810	339
141	SEG[23]	-1445	-360	282	COMS1	2810	373

Unit:um

Tab:835-12 rev:B3

Number: AiP31565CR-AX-XS-A040EN

9, Statements And Notes

9.1. The name and content of Hazardous substances or Elements in the product

		Hazardous substances or Elements									
Part name	Lead and lead compou nds	Mercur y and mercur y compo unds	Cadm ium and cadmi um comp ounds	Hexaval ent chromiu m compoun ds	Polybro minated biphenyl s	Polybro minate d biphen yl ethers	Dibutyl phthala te	Butylbe nzyl phthala te	Di-2-et hylhex yl phthala te	Diisobu tyl phthala te	
Lead frame	0	0	0	0	0	0	0	0	0	0	
Plastic resin	0	0	0	0	0	0	0	0	0	0	
Chip	0	0	0	0	0	0	0	0	0	0	
The lead	0	0	0	0	0	0	0	0	0	0	
Plastic sheet installed	0	0	0	0	0	0	0	0	0	0	
explanation	o: Indicates that the content of hazardous substances or elements in the detection limit of the following the SJ/T11363-2006 standard. ×: Indicates that the content of hazardous substances or elements exceeding the SJ/T11363-2006 Standard limit requirements.							63-2006			

9.2. Notion

Recommended carefully reading this information before the use of this product;

The information in this document are subject to change without notice;

This information is using to the reference only, the company is not responsible for any loss;

The company is not responsible for the any infringement of the third party patents or other rights of the responsibility.

Address: Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province

49/ 49

http://www.i-core. cn

P.C.: 214072

VER:2019-12-B1