

Ph. 480-503-4295 | NOPP@FocusLCD.com

TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

Character Display Module

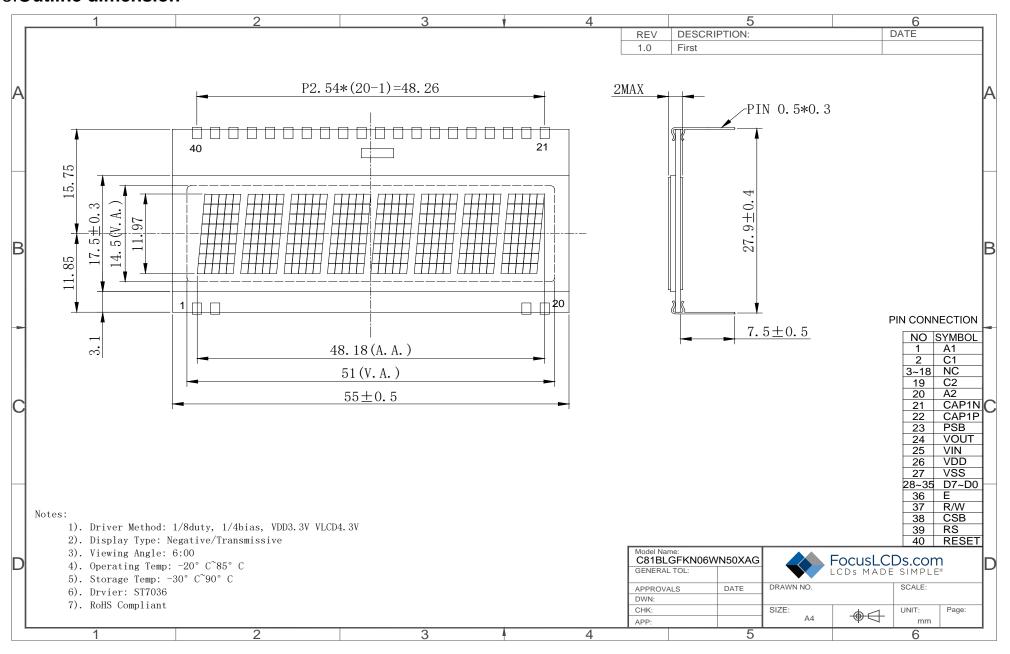
Part Number

C81BLGFKN06WN50XAG

Overview

Character: 8x1(55x27.6), FSTN, Black background, No Backlight, Bottom view, Wide temp, Transmissive (negative), 5V LCD, Controller=ST7036I, RoHS Compliant

1.Features


- 1. 5x8 dots with cursor
- 2. Built-in controller ST7036
- 3. +3.3V power supply
- 4. 1/8 duty cycle;1/4bias5. 8characters *1lines display

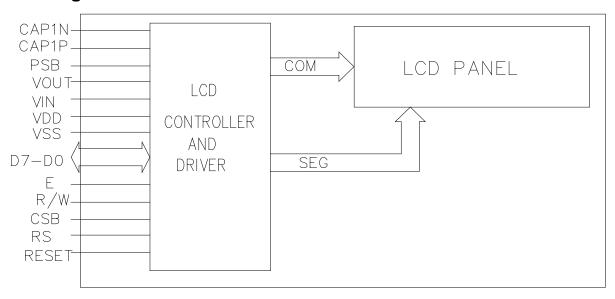
	□TN						
LCD type	□FSTN	☑FSTN N					
	□STN Yellow Green		□STN Gray □STN Blue Negative				
View direction	☑6 O'clock		□12 O'clock				
Rear Polarizer	□Reflective		□Transflective ☑Transmissive				
Temperature Range	□Normal		☑Wide	□Super Wide			
DC to DC circuit	□Build-in		☑Not Build-in				
Touch screen	□With		☑Without				
Font type	☑English-Japanese		□English-Europen	□Other			

2. MECHANICAL SPECIFICATIONS

Module size	55.0mm(L)*27.6mm(W)*9.2mm(H)
Viewing area	51.0mm(L)*14.5mm(W)
Weight	Approx.

3. Outline dimension

3


www.FocusLCDs.com

4. Absolute maximum ratings

Item	Symbol		Standard		Unit
Power voltage	V _{DD} -V _{SS}	0	-	7.0	M
Input voltage	Vin	VSS	-	VDD	V
Operating temperature range	Vop	-10	-	+50	°C
Storage temperature range	Vst	-20	-	+70	C

5.Block diagram

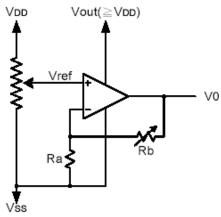
6.Interface pin description

Pin no.	Symbol	External connection	Function
1	A1	Power supply	Power supply (+3.0V) for BKL
2	C1	Power supply	Ground for BKL (GND)
3~18	NC		
19	C2	Power supply	Ground for BKL (GND)
20	A2	Power supply	Power supply (+3.0V) for BKL
21	CAP1N	Power supply	For voltage booster circuit
22	CAP1P	Power supply	For voltage booster circuit
23	PSB	MPU	Interface selection
24	VOUT	Power supply	DC/DC voltage converter
25	VIN	Power supply	Input the voltage to booster
26	VDD	Power supply	Power supply (+3.3V) for LCM
27	VSS	Power supply	Signal ground for LCM (GND)
28~35	D7-D0	MPU	This is an 8-bit-directional data bus.
36	Е	MPU	Operation (data read/write) enable signal
37	R/W	MPU	Read/write select signal
38	CSB	MPU	Chip select in parallel mode and serial interface
39	RS	MPU	Register select signal
40	RESET	MPU	External reset PIN

7. Optical characteristics

FSTN type display module (Ta=25°C, VDD=3.3V)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	
Viewing angle	LeftRight	θ	Ta=25℃	-	60	-	400	
(6 0'clock)	TopBottom	opBottom θ		-	70	-	deg	
Contrast ratio		CR		3	5	-	-	
Doon on oo time	Rise	t r	Ta=25℃	-	150	250	100.0	
Response time	Tall	t f		-	200	300	ms	


8. Electrical characteristics

DC characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage for LCD	V_{DD} - V_0	Ta =25°C	-	4.3	-	V
Input voltage	V_{DD}		-	3.3	-	
Supply current	I _{DD}	Ta=25℃, V _{DD} =3.3V	-	1.0	1.5	mA
Input leakage current	ILKG		-	-	1.0	uA
"H" level input voltage	VIH		2.2	-	V _{DD}	
"L" level input voltage	VIL	Twice initial value or less	0	-	0.6	V
"H" level output voltage	Vон	LOH=-0.25mA	2.4	-	-	V
"L" level output voltage	Vol	LOH=1.6mA	-	-	0.4	

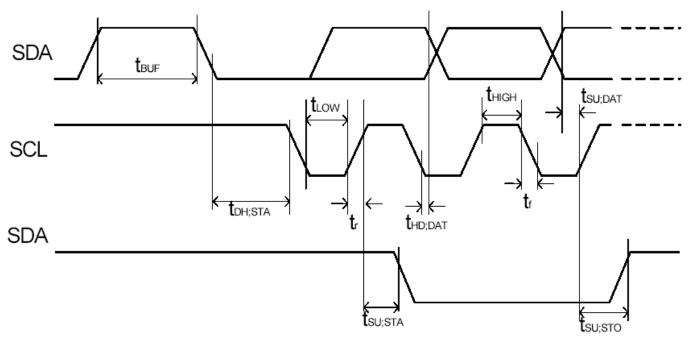
9.Contrast adjust

V0 voltage follower value calculation

V0=(1+
$$\frac{\text{Rb}}{\text{Ra}}$$
) × Vref
While Vref=VDD ×($\frac{\alpha+36}{100}$)

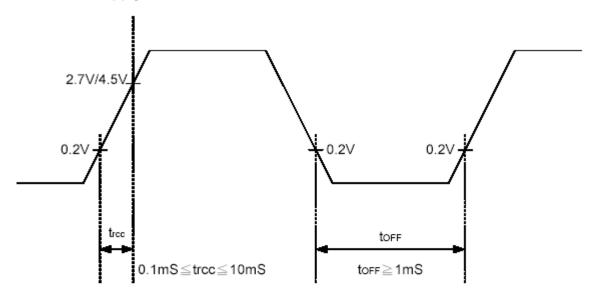
C5	C4	C3	C2	C1	C0	α
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
			:			:
			:			:
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Rab2	Rab1	Rab0	1+Rb/Ra
0	0	0	1
0	0	1	1.25
0	1	0	1.5
0	1	1	1.8
1	0	0	2
1	0	1	2.5
1	1	0	3
1	1	1	3.75

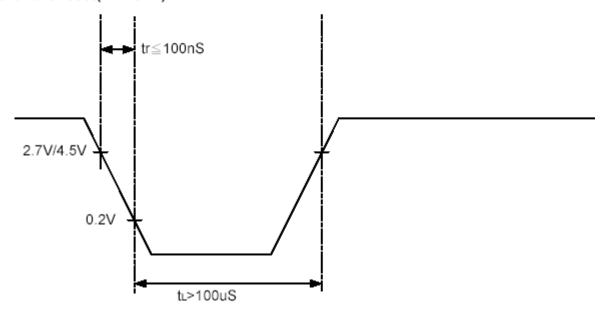


10.Timing Characteristics

(Ta = 25°C)


Item	Signal _i Symbol _i Condition			VDD=2.7 Rati		VDD=4.5 Rati	Units	
item	Sigilal	Cyllibol	Contaition	Min.	Max.	Min.	Max.	Omes
SCL clock frequency		f _{SCLK}		DC	300K	DC	400	kHz
SCL clock low period	SCL	t_{LOW}	_	2.5		1.3		
SCL clock high period		t _{HIGH}		0.6	-	0.6		μs
Data set-up time	SDA	t _{SU;DAT}		1800	_	700	_	ns
Data hold time	SDA	t _{HD:DAT}	_	0	0.5	0	0.5	μs
SCL,SDA rise time	SCL,	t _r		20+0.1C _b	300	20+0.1C _b	300	ns
SCL,SDA fall time	SDA t _f		1 -	20+0.1C _b	300	20+0.1C _b	300	1115
Capacitive load represent by each bus line		Сь	_	_	400	_	400	pf
Setup time for a repeated START condition	SDA	t _{SU;STA}	_	0.6		0.6	_	μs
Start condition hold time		t _{HD;STA}	_	1.8		1.0		μs
Setup time for STOP condition		t _{su;sto}	_	0.6		0.6	_	μs
Bus free time between a Stop and START condition	SCL	t _{BUF}	_	1.3	_	1.3	_	μs

I2C interface


Internal Power Supply Reset

Notes:

- toff compensates for the power oscillation period caused by momentary power supply oscillations.
- Specified at 4.5V for 5V operation, and at 2.7V for 3V operation.
- For if 2.7V/4.5V is not reached during 3V/5V operation, internal reset circuit will not operate normally.

Hardware reset(XRESET)

System Interface

This chip has all four kinds of interface type with MPU: 4-bit bus, 8-bit bus, serial and fast I²C interface. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/ICON RAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS input pin in 4-bit/8-bit bus mode.

RS	R/W	Operation									
L	L	Instruction Write operation (MPU writes Instruction code into IR)									
L	Н	Read Busy Flag(DB7) and address counter (DB0 ~ DB6)									
Н	L	Data Write operation (MPU writes data into DR)									
Н	Н	Data Read operation (MPU reads data from DR)									

Table 1. Various kinds of operations according to RS and R/W bits.

I²C interface

It just only could write Data or Instruction to ST7036 by the IIC Interface. It could not read Data or Instruction from ST7036 (except Acknowledge signal).

SCL: serial clock input SDA IN: serial data input

SDA OUT: acknowledge response output

Slaver address could set from "0111100" to "0111111".

The I²C interface send RAM data and executes the commands sent via the I²C Interface. It could send data in to the RAM. The I²C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.1.

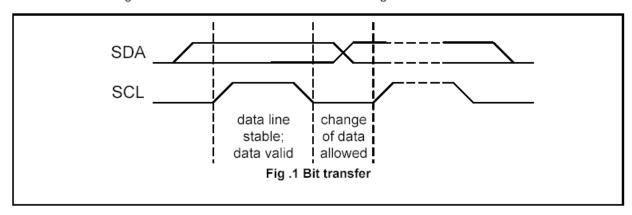
START AND STOP CONDITIONS

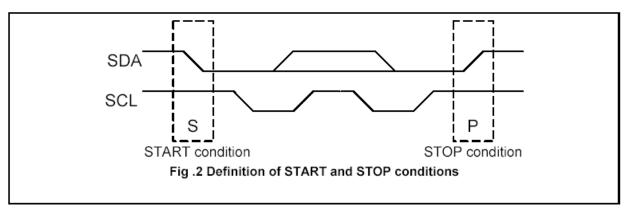
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.2.

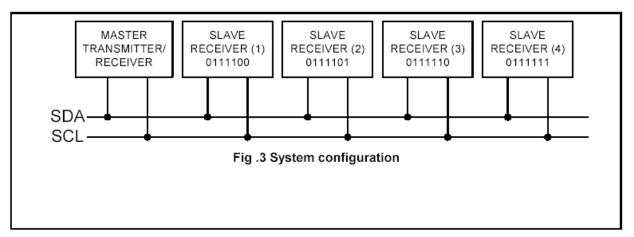
SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.3.

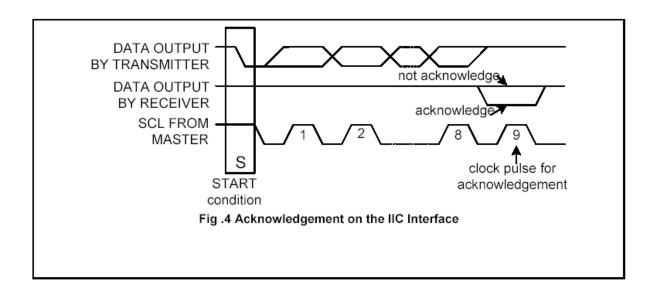
- · Transmitter: the device, which sends the data to the bus
- · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- · Slave: the device addressed by a master
- · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message




- · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to so and the message is not corrupted
- · Synchronization: procedure to synchronize the clock signals of two or more devices.

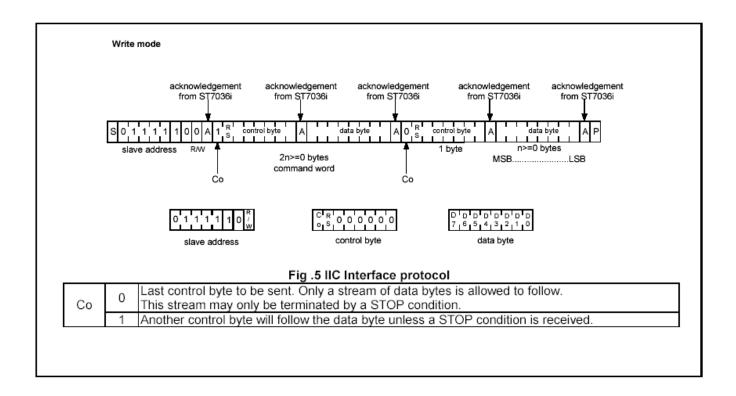

ACKNOWLEDGE

Acknowledge signal (ACK) is not BF signal in parallel interface.


Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW durir the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STO condition. Acknowledgement on the I²C Interface is illustrated in Fig.4.

I²C Interface protocol

The ST7036 supports command, data write addressed slaves on the bus.


Before any data is transmitted on the I²C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100 to 0111111) are reserved for the ST7036. The R/W is assigned to 0 for Write only. The I²C Interface protocol is illustrated in Fig.5.

The sequence is initiated with a START condition (S) from the I²C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I²C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.

A command word consists of a control byte, which defines Co and RS, plus a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7036i device. If the RS bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I²C INTERFACE-bus master issues a STOP condition (P).

During write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, writing into RAM, is done automatically. So to speak, after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS bit input in IIC interface.

RS	R/W	Operation
L	L	Instruction Write operation (MPU writes Instruction code into IR)
Н	L	Data Write operation (MPU writes data into DR)

Table 2. Various kinds of operations according to RS and R/W bits.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High.

Address Counter (AC)

Address Counter(AC) stores DDRAM/CGRAM/ICON RAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM/ICON RAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 6 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.

> 2-line display (N3=0,N = 1) (Figure 9)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the ST7036 is used, 20 characters \times 2 lines are displayed. See Figure 9. When display shift operation is performed, the DDRAM address shifts. See Figure 10.

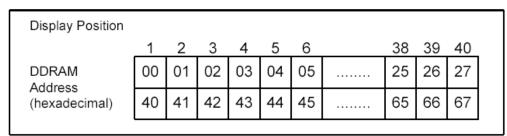


Fig. 9 2-Line Display

Display Position	1	2	3	4	5	6	7	8		17	18	19	20
DDRAM	00	01	02	03	04	05	06	07		10	11	12	13
Address	40	41	42	43	44	45	46	47		50	51	52	53
For Shift	01	02	03	04	05	06	07	08		11	12	13	14
Left	41	42	43	44	45	46	47	48		51	52	53	54
			•									•	
For Shift	27	00	01	02	03	04	05	06		0F	10	11	12
Right	67	40	41	42	43	44	45	46		4F	50	51	52
			Fia.	10 2-	Line	bv 20)-Cha	racte	r Displav Example				

Character Generator ROM (CGROM)

The character generator ROM generates 5×8 dot character patterns from 8-bit character codes. It can generate $240/250/248/256 \ 5 \times 8$ dot character patterns (select by OPR1/2 ITO pin). User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written.

Write into DDRAM the character codes at the addresses shown as the left column of Table 5 to show the character patterns stored in CGRAM.

See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM.

					Coc ata					CGF \dd							cte RA				;
b7	b6	b5	b4	b3	b2	b1	bO	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
					0	0	0				0	0	0				1	1	1	1	1
					0	0	0				0	0	1				0	0	1	0	0
					0	0	0				0	1	0				0	0	1	0	0
0	0	0	0	_	0	0	0	0	0	0	0	1	1	_	_	_	0	0	1	0	0
Ŭ	ľ	0	0		0	0	0		0		1	0	0				0	0	1	0	0
					0	0	0				1	0	1				0	0	1	0	0
					0	0	0				1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0
					0	0	1				0	0	0				1	1	1	1	0
					0	0	1				0	0	1				1	0	0	0	1
					0	0	1				0	1	0				1	0	0	0	1
0	0	0	0	_	0	0	1	0	0	1	0	1	1	_	_	_	1	1	1	1	0
Ŭ	ľ	0	0		0	0	1		0		1	0	0				1	0	1	0	0
					0	0	1				1	0	1				1	0	0	1	0
					0	0	1				1	1	0				1	0	0	0	1
					0	0	1				1	1	1				0	0	0	0	0

Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data)

Notes:

- Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.
- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
- 5. "1" for CGRAM data corresponds to display selection and "0" to non-selection, "-" Indicates no effect.
- 6. Different OPR1/2 ITO option can select different CGRAM size.

11.Instruction description

There are four categories of instructions that:

- Designate ST7036 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Others

> instruction table at "Normal mode"

(when "EXT" option pin connect to VDD, the instruction set follow below table)

Instruction					ucti						Description		nstructio ecution T	
instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	OSC= 380kHz	OSC= 540kHz	OSC= 700kHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	×	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	<u> </u>	Ø	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 µs	18.5 µs	14.3 µs
Display ON/OFF	0	0	0	0	0	0	1	D	O	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 µs	18.5 µs	14.3 µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	×	×	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 µs	18.5 µs	14.3 µs
Function Set	0	0	0	0	1	DL	N	х	Х	Х	DL: interface data is 8/4 bits N: number of line is 2/1	26.3 µs	18.5 µs	14.3 µs
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	26.3 µs	18.5 µs	14.3 µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 µs	18.5 µs	14.3 µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	26.3 μs	18.5 µs	14.3 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	26.3 µs	18.5 µs	14.3 µs

Note

Be sure the ST7036 is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7036. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

> instruction table at "Extension mode"

(when "EXT" option pin connect to Vss, the instruction set follow below table)

(WHOTI EXT	Opti	on p							aout	1130	t follow below table)	1.	nstructio	\n
Instruction			lr	nstr	ucti	on	Coc	de			Description		cution T	
mstraction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	•	OSC= 380kHz	OSC= 540kHz	OSC= 700kHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 µs	18.5 µs	14.3 µs
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 μs	18.5 µs	14.3 µs
Function Set	0	0	0	0	1	DL	Z	DH	IS2	IS1	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS[2:1]: instruction table select	26.3 µs	18.5 µs	14.3 µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 µs	18.5 µs	14.3 μs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 μs	18.5 µs	14.3 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 μs	18.5 µs	14.3 µs

						Inst	truc	tior	ı ta	ble	0(IS[2:1]=[0,0])			
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	Х	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 µs	18.5 µs	14.3 µs
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	26.3 μs	18.5 µs	14.3 µs

						Inst	truc	tior	ı ta	ble	1(IS[2:1]=[0,1])			
Bias Set	0	0	0	0	0	1	BS	1	0	FX	BS=1:1/4 bias BS=0:1/5 bias FX: fixed on high in 3-line application and fixed on low in other applications.	_	18.5 µs	14.3 µs
Set ICON Address	0	0	0	1	0	0	AC3	AC2	AC1	AC0	Set ICON address in address counter.	26.3 µs	18.5 µs	14.3 µs
Power/ICON Control/ Contrast Set	0	0	0	1	0	1	lon	Bon	C5	C4	Ion: ICON display on/off Bon: set booster circuit on/off C5,C4: Contrast set for internal follower mode.	26.3 µs	18.5 µs	14.3 µs
Follower Control	0	0	0	1	1	0	Fon	Rab 2	Rab 1	Rab 0	Fon: set follower circuit on/off Rab2~0: select follower amplified ratio.	26.3 µs	18.5 µs	14.3 µs
Contrast Set	0	0	0	1	1	1	СЗ	C2	C1	CO	Contrast set for internal follower mode.	26.3 μs	18.5 µs	14.3 µs

						Inst	truc	tior	ı ta	ble	2(IS[2:1]=[1,0])			
Double Height Position Select	0	0	0	0	0	1	UD	×	х	х	UD: Double height position select	26.3 µs	18.5 µs	14.3 µs
Reserved	0	0	0	1	Х	Х	Х	X	Х	Х	Do not use (reserved for test)	26.3 μs	18.5 µs	14.3 µs

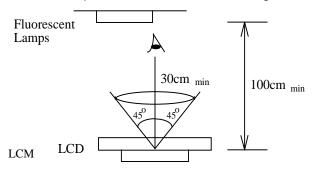
Instruction table 3(IS[2:1]=[1,1]):Do not use (reserved for test)

12.Standard character pattern

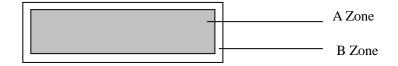
67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000														***		
0001																
0010																
0011																
0100																
0101																
0110																
0111																
1000																
1001																
1010																
1011																
1100																
1101																
1110																
1111																

CGRAM/CGROM arrangement with(OPR1=0;OPR2=0)

(0,0)	(0,1)	(1,0)	(1,1)
67-64 60-60 0000 0001 	57-56 0000 0001 · · ·	60-60 0000 0001 · · ·	67-54 60-60 0000 0001 · · ·
··· 🖫 ···	0000	0000	occo 🖺 🖫 · · ·
ccc1	0001	0001	0001 🗓 📅 …
0010	0010	0010	0010 🔯 🐯 …
0011	0011	0011	0011 🗗 📆 …
0100	0100	0100	0100 🛱 📙
0101	0101	0101	0101
0410	0110 🛄	0110	омо 👃 🗒
0111	0111	0111	0111 👺 👸
1000	1000	1000 🗱 🗮	1000 🖶 🖪 …
1001	1001	1001	1001
1010	1010	1010	1010
1011	1011	1011	1011
1100	1100	1100	1100
1101	1101	1101 🕱 🖳	1101
1110	1110 🖺 🖫	1110 🔯 🖫	1110 📓 🖫
1111	1111 📓 🔐	1111 🐯 🔯	1111 🔯 🔯



13.QUALITY SPECIFICATIONS


13.1 Standard of the product appearance test

Manner of appearance test: The inspection should be performed in using 20W x 2 fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 30 cm or more.

Viewing direction for inspection is 45° from vertical against LCM.

Definition of zone:

A Zone: Active display area (minimum viewing area).

B Zone: Non-active display area (outside viewing area).

13.2 Specification of quality assurance AQL inspection standard

Sampling method: MIL-STD-105E, Level II, single sampling

Defect classification (Note: * is not including)

Classify		Item	Note	AQL
Major	Display state	Short or open circuit	1	0.65
		LC leakage		
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Back-light	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display	Background color deviation	2	1.0
	state	Black spot and dust	3	
		Line defect, Scratch	4	
		Rainbow	5	
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
	Soldering	Poor connection	9	
	Wire	Poor connection	10	
	TAB	Position, Bonding strength	13	

Note on defect classification

No.	Item				Criterion	
1	Short or open circuit				Not allow	
	LC leakage					
	Flickering					
	No display					
	Wrong viewing direction					
	Wrong Back-light					
2	Contrast defect		Refe	r to	approval sa	mple
	Background color deviation					
3	Point defect, Black spot, dust	Q ↑Y			Point Size	Acceptable Qty.
	(including Polarizer)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			φ <u><</u> 0.10	Disregard
					.10<φ≤0.20	3
	$\phi = (X+Y)/2$.20<φ≤0.25 .25<φ≤0.30	2
				0	φ>0.30	Unit: mm
						Office fillin
4	Line defect,	_ ↓				
-		~ ™W			Line	Acceptable Qty.
	Scratch	\leftrightarrow	L		W	D: 1
		L	3.0≥		0.015≥W	Disregard
			2.0≥		0.03≥W 0.05≥W	2
			1.0>		0.03> W	1
					0.05 <w< td=""><td>Applied as point defect</td></w<>	Applied as point defect
						Unit: mm
5	Rainbow	Not more than t	wo co	lor	changes acr	oss the viewing area.

No	Item	Criterion
6	Chip Remark: X: Length direction Y: Short direction	Acceptable criterion $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Z: Thickness direction t: Glass thickness W: Terminal Width	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Acceptable criterion $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		Acceptable criterion $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

No.	Item	Criterion
7	Segment pattern W = Segment width φ = (X+Y)/2	(1) Pin hole $\phi < 0.10 \text{mm is acceptable.}$ Y
8	Back-light	(1) The color of backlight should correspond its specification.(2) Not allow flickering
9	Soldering	(1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land. Lead Land 50% lead
10	Wire	(1) Copper wire should not be rusted(2) Not allow crack on copper wire connection.(3) Not allow reversing the position of the flat cable.(4) Not allow exposed copper wire inside the flat cable.
11*	PCB	(1) Not allow screw rust or damage.(2) Not allow missing or wrong putting of component.

No	ltem	Criterion		
12	Protruded W: Terminal Width	Acceptable criteria: $Y \le 0.4$		
13	TAB	1. Position $\begin{array}{cccccccccccccccccccccccccccccccccccc$		
14	Total no. of acceptable Defect	A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10mm B. Zone It is acceptable when it is no trouble for quality and assembly in customer's end product.		

13.3 Reliability of LCM

Reliability test condition:

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	48	
High temp. Operating	70°C	48	No abnormalities in functions and appearance
Low temp. Storage	-30°C	48	
Low temp. Operating	-20°C	48	
Humidity	40°C/ 90%RH	48	
Temp. Cycle	0° C ← 25° C $\rightarrow 50^{\circ}$ C (30 min ← 5 min \rightarrow 30min)	10cycles	

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature (20±8°C), normal humidity (below 65% RH), and in the area not exposed to direct sun light.

13.4 Precaution for using LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting Focus Display Solutions, Inc.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or

- defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C±10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.