

Ph. 480-503-4295 | NOPP@FocusLCD.com

TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

TFT Display Module Part Number

E101RGL1912LB6M350-N

Overview:

- 10.1-inch TFT (228.46x149.1mm)
- LVDS Interface
- 1280x800 pixels
- 3.3V
- White LED back-light

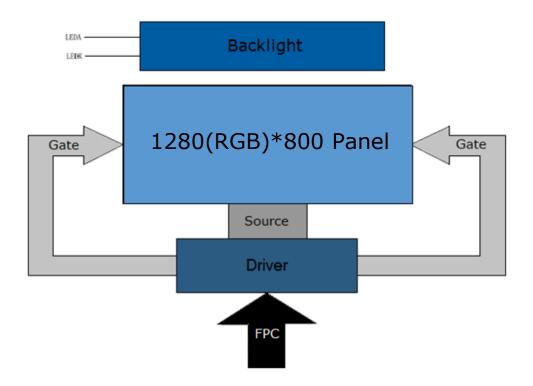
- Transmissive/ Normally Black
- No Touch Panel
- 350 NITS
- Controller: FT5826QSL
- RoHS Compliant

Description

This is a color active matrix TFT (Thin Film Transistor) LCD (Liquid Crystal Display) that uses amorphous silicon TFT as a switching device. This model is composed of a transmissive type TFT-LCD Panel, driver circuit and backlight unit. The resolution of the 10.1" TFT-LCD contains 1280x800 pixels and can display up to 16.7M colors.

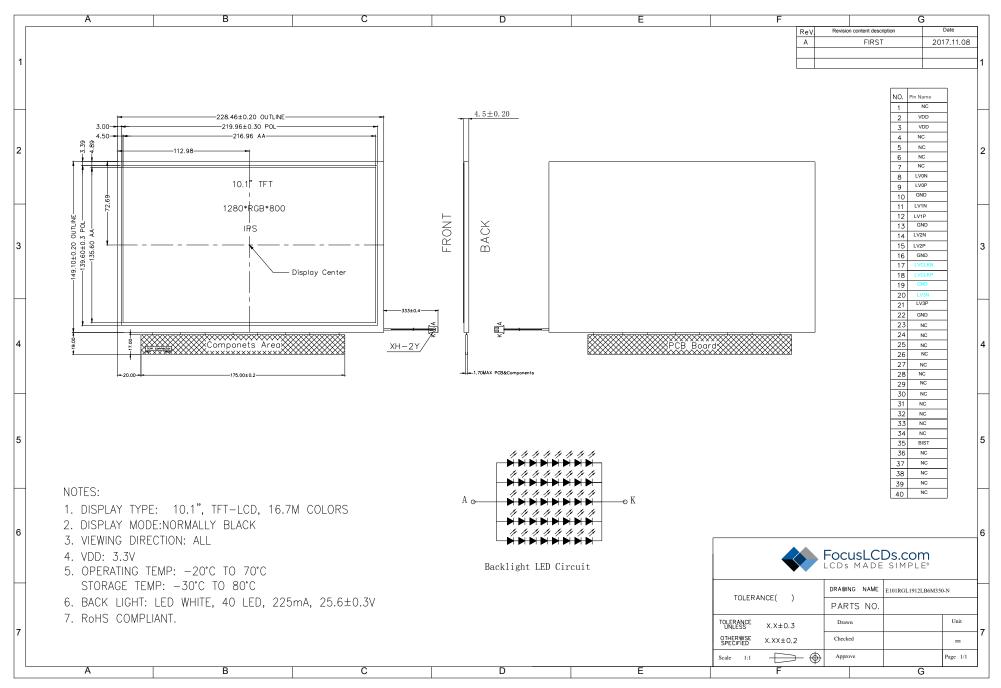
Features

Low Input Voltage: 3.3V (TYP) Display Colors of TFT LCD: 16.7M colors TFT Interface: LVDS


General Information Items	Specification Main Panel	– Unit	Note
TFT Display area (AA)	216.96(W) x 135.60(H) (10.1 inch)	mm	-
Driver element	TFT active matrix	-	-
Display colors	16.7M	colors	-
Number of pixels	1280(RGB)x800	dots	-
TFT Pixel arrangement	RGB stripe	-	-
Pixel pitch	0.1695 (H) x 0.1695 (V)	mm	-
Viewing angle	ALL	o'clock	-
CTP Driver IC	FT5826QSL	-	-
Display mode	Transmissive/ Normally Black	-	-
Operating temperature	-20~+70	°C	-
Storage temperature	-30~+80	°C	-

Mechanical Information

	ltem	Min	Тур.	Max	Unit	Note
	Height (H)		228.46		mm	-
Module size	Vertical (V)		149.10		mm	-
5120	Depth (D)		4.5		mm	-
	Weight		TBD		g	-



1. Block Diagram

2. Outline Dimensions

.

3. Input Terminal Pin Assignment

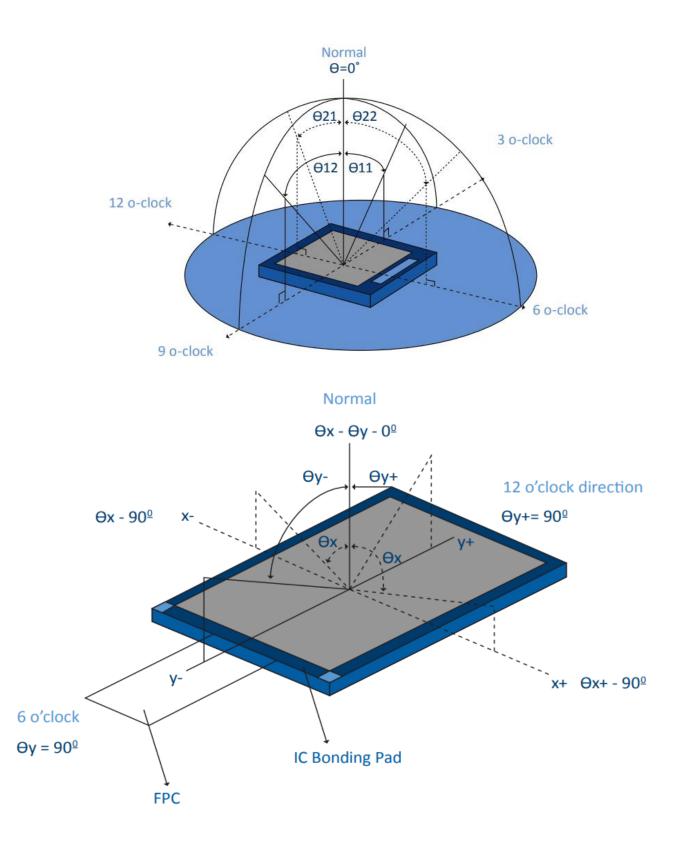
NO.	Symbol	Description	I/O
	NC	Description	I/U
1	VDD	Power supply	 P
3	VDD	Power supply	P
4	NC		P
4 5	NC		
6	NC		
7	NC		
8	LVON		
9	LVON	+LVDS differential data input	
10	GND	Ground	P
10	LV1N	-LVDS differential data input	г 1
12	LV1N LV1P	+LVDS differential data input	
12	GND	Ground	P
13	LV2N	-LVDS differential data input	г 1
14	LV2N LV2P	+LVDS differential data input	
16	GND	Ground	P
10	LVCLKN	-LVDS differential clock input	г 1
18	LVCLKN	+LVDS differential clock input	
19	GND	Ground	P
20	LV3N	-LVDS differential data input	
20	LV3N	+LVDS differential data input	
21	GND	Ground	P
23	NC		
23	NC		
25	NC		
26	NC		
27	NC		
28	NC		
29	NC		
30	NC		
31	NC		
32	NC		
33	NC		
34	NC		
35	BIST	BIST pin. Active high.	1
36	NC		
37	NC		
38	NC		
39	NC		
40	NC		
	$O \cdot Output P$		

I: Input, O: Output, P: Power

4. LCD Optical Characteristics

4.1 Optical Specifications

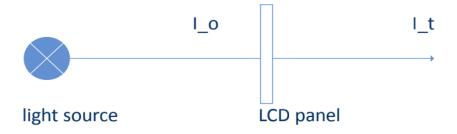
ltem		Symbol	Condition	Min	Тур.	Max	Unit	Note
Contrast F	Ratio	Cr		600	800			(2)
Response time	Rising Falling	TR+TF			25	50	msec	(4)
NTSC				42	45		%	(5)
Uniform	ity	Yu		70	75		%	
	White	W _x	Θ = φ = 0	0.267	0.307	0.347		
		Wy	Normal	0.307	0.347	0.387		
	Red	R _x	viewing angle	0.622	0.642	0.662	-	
Color Filter	neu	Ry	4	0.315	0.335	0.355	-	
Chromaticity	Green	Gx	-	0.306	0.326	0.346	-	(5)(6)
		G _Y		0.577	0.597	0.617		
	Blue	Bx	-	0.126	0.146	0.166		
	Blue	B _Y		0.046	0.066	0.086		
	Hor.	ΘL	φ=180° (9 o'clock)	75	85			
Viewing angle	1101.	Θr	φ=0° (3 o'clock)	75	85		degree	
viewing angle	Ver.	Θτ	φ=90° (12 o'clock)	75	85		uegree	(1)(6)
	VCI.	Θв	φ=270° (6 o'clock)	75	85			
Option View [Direction			ALL				(1)


4.2 Measuring Condition

VDD = 3.3V, IL = 260mA (Backlight current) Ambient temperature: $25 \pm 2^{\circ}C$ 15min. warm-up time

Optical Specification Reference Notes:

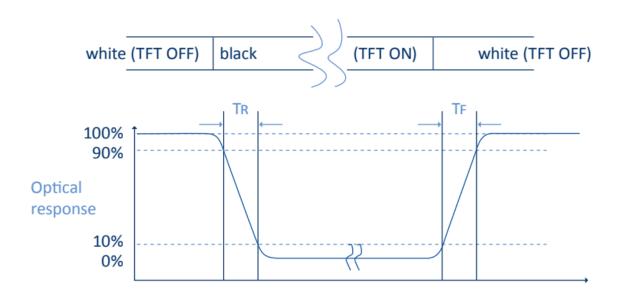
(1) Definition of Viewing Angle: The viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the LCD surface.



(2) Definition of Contrast Ratio (Cr): measured at the center point of panel. The contrast ratio (Cr) measured on a module, is the ratio between the luminance (Lw) in a full white area (R=G=B=1) and the luminance (Ld) in a dark area (R=G=B=0).

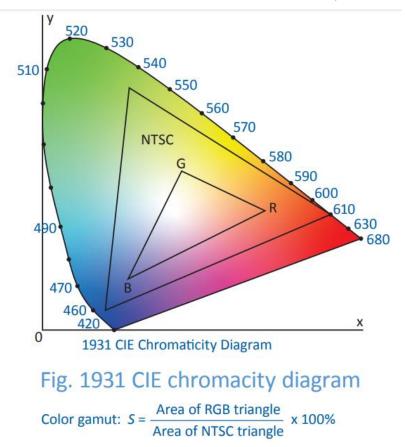
$$Cr = \frac{Lw}{Ld}$$

(3) Definition of transmittance (T%): The transmittance of the panel including the polarizers is measured with electrical driving.

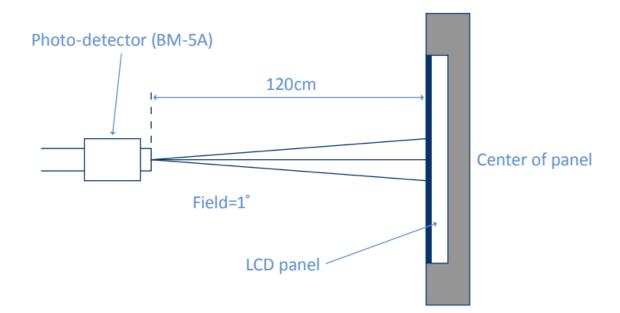


The transmittance is defined as:

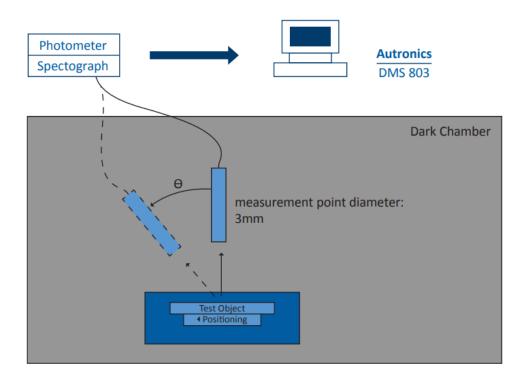
$$Tr = \frac{It}{Io} x \ 100\%$$

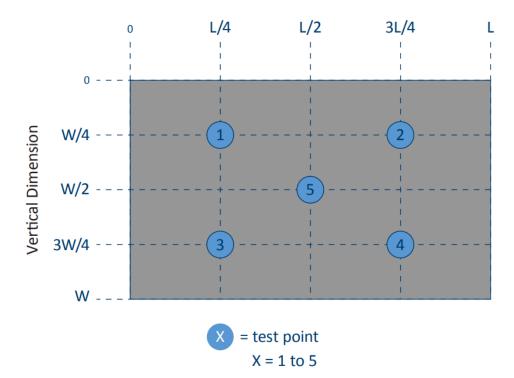

Io = the brightness of the light source. It = the brightness after panel transmission

(4) Definition of Response Time (Tr, Tf): The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition.



(5) Definition of Color Gamut: Measuring machine CFT-01. NTSC's Primaries: R(x,y,Y),G(x,y,Y), B(x,y,Y). FPM520 of Westar Display Technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics. The color chromaticity shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.


(6) Definition of Optical Measurement Setup:



(6) Optical Measurement Setup Continued:

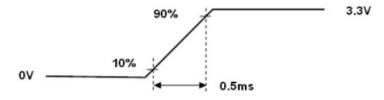
The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 20 minutes.

Horizontal Dimension

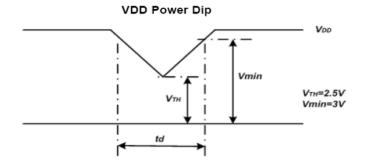
5. Electrical Characteristics

5.1 Absolute Maximum Rating (Ta=25 °C, VSS=0V)

Characteristics	Symbol	Min	Max	Unit
Logic Supply Voltage	VDD	-0.3	4.0	V
Operating Temperature	Тор	0	+50	°C
Storage Temperature	Тѕт	-20	+60	°C


If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

5.2 Typical Operating Conditions

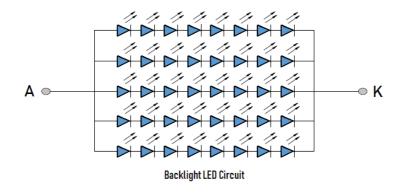

Characteristics	Symbol	Min	Тур.	Max	Unit	Note
Digital Supply Voltage	Vdd	3.0	3.3	3.6	v	(2)(4)
Normal Mode Current Consumption	IDD		295		mA	(3)(4)
	Vін	0.7VDD		VDD	V	
Level Input Voltage	VIL	GND		0.3VDD	V	
	Vон	0.8VDD		VDD	V	
Level Output Voltage	Vol	GND		0.2VDD	V	

Note 1.) Measuring Condition:

Note 2.) VDD Power Dip Condition: $VTH < VDD \le Vmin$, $td \le 10ms$ (time for the voltage to return to normal)

Note 3.) Frame Rate =60Hz, VDD=3.3V, DC Current

Note 4.) Operating temperature 25°C, humidity 55%RH


5.3 LED Backlight Characteristics

The backlight system is edge lighting type with 40 chips LED.

ltem	Symbol	Min	Тур.	Max	Unit	Note
Forward Current	lF		260		mA	
Forward Voltage	VF	8.7	9.3	9.9	V	
LCM Luminance	LV	300	350	400	cd/m2	Note 3
LED lifetime	Hr	15,000	20,000		hour	Note1 & 2
Uniformity	AVg	70	75		%	Note 3

Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: Ta=25 ± 3 °C, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL = 260mA. The LED lifetime could be decreased if operating IL is larger than 260mA. The constant current driving method is suggested.

Note 3: Luminance Uniformity of these 9 points is defined as below:

6. AC Timing Characteristics

6.1 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Differential Input High Threshold Voltage	Vth			+100	mV	VCM=+1.2V
Differential Input Low Threshold Voltage	VtI	-100			mV	VCM=+1.2V
Magnitude Differential Input Voltage	Vid	100		600	mV	
Common Mode Voltage	Vсм	Vid /2		2.4- Vid /2	V	

Table 6.1: LVDS Receiver Differential Input Timing Characteristics

Note: Input signals shall be low or high resistance state when VDD is off. All electrical characteristics for LVDS signals are defined and shall be measured at the interface connector of the LCD.

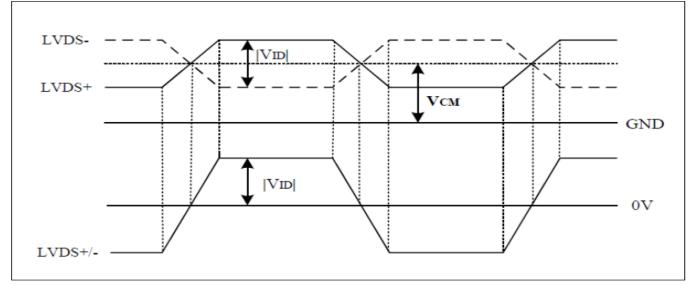


Figure 6.1: LVDS Receiver Differential Input Timing Diagram

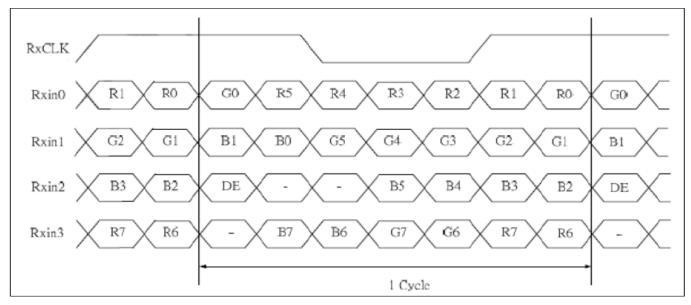


Figure 6.2: RGB Input Data Mapping Timing Diagram

6.2 Clock and Data Interface Timing Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Frame Rate			60		Hz	
Frame Period	tv	815	823	1023	line	
Vertical Display Time	tvd	800	800	800	line	
Vertical Blanking Time	tvw+tvbp+tvfp	15	23	33	line	
1 Line Scanning Time	tн	1410	1440	1470	clock	
Horizontal Display Time	tнd	1280	1280	1280	clock	
Horizontal Blanking Time	thw+thbp+thfp	60	160	190	clock	
Clock Rate	1/Tc	68.9	71.1	73.4	MHz	

Table 6.2: Interface Data Timing Characteristics

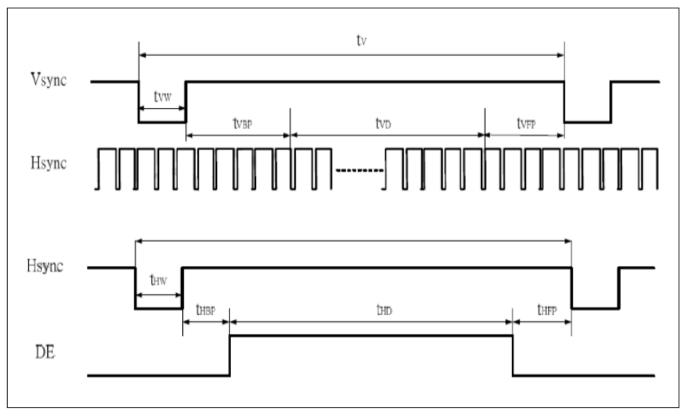


Figure 6.3: Interface Sync (DE Mode) Input Timing Diagram

6.3 Power ON/OFF Sequence Timing

The interface signals are shown below. Signals from any system shall be in high resistance state or low level when VDD is off.

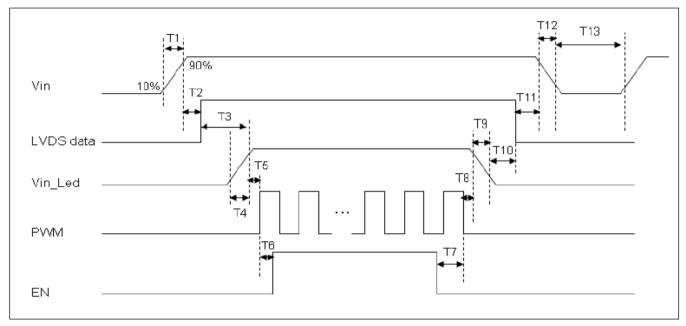


Figure 6.4: Power On/OFF Sequence Timing Diagram

Parameter	Symbol	Unit	Min	Тур.	Max
VIN rise time	T1	ms	0.5		10
VIN good to signal valid	T2	ms	30		90
Signal valid to backlight on	Т3	ms	200		
Backlight power on time	T4	ms	0.5		
Backlight VDD good to system PWM on	T5	ms	10		
System PWM on to backlight enable on	T6	ms	10		
Backlight enable off to system PWM off	T7	ms	0		
System PWM off to backlight power disable	Т8	ms	200		
Backlight power off time	Т9	ms	0.5	10	30
Backlight off to signal disable	T10	ms	200		
Signal disable to power down	T11	ms	0		50
VIN fall time	T12	ms	0.5	10	30
Power off	T13	ms	500		

Table 6.3: Power On/OFF Sequence Timing Characteristics

7. Cautions and Handling Precautions

7.1 Handling and Operating the Module

- 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assembly work.
- 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch thesurface.
- 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur.
- 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or softcloth.
- 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- 8. Protect the module from static; it may cause damage to the CMOSICs.
- 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- 10. Do not disassemble the module.
- 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- 12. Pins of I/F connector shall not be touched directly with bare hands.
- 13. Do not connect, disconnect the module in the "Power ON" condition.
- 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence.

7.2 Storage and Transportation.

- 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%
- 2. Do not store the TFT-LCD module in direct sunlight.
- 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.