

Ph. 480-503-4295 | NOPP@FocusLCD.com

TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

TFT Display Module

Part Number E24RE-I-CW400-C

Overview:

- 2.4-inch TFT (42.92x60.26)
- 240 320
- Parallel, SPI, and RGB Interfaces
- ‡ 'u erature
- All View

- Transmissive, IPS
- Capactive Touch Panel
- 400 NITS
- TFT IC: ST7789V
- RoHS Compliant

Description

This is a color active matrix TFT (Thin Film Transistor) LCD (Liquid Crystal Display) that uses amorphous silicon TFT as a switching device. This model is composed of a transmissive type TFT LCD Panel, driver circuit, a capacitive touch panel and a backlight unit. The resolution of the 2.4" TFT LCD contains 240RGB)x320 pixels and can display up to 262k colors.

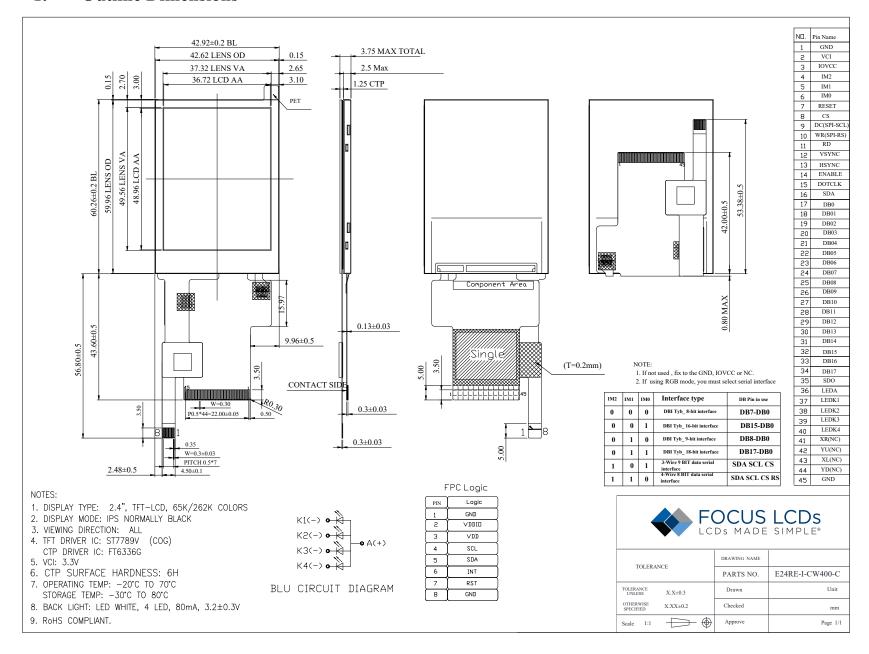
TFT Features

Low Input Voltage: 3.3V Display Colors: 65k/262k

TFT Interfaces: 8/9/16/18-bit parallel MCU

3/4-wire SPI+16/18-bit RGB

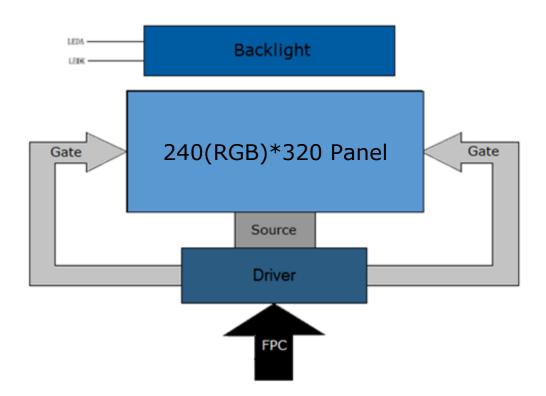
3/4-wire Serial


CTP Interface: I2C

General Information Items	Specification Main Panel	Unit	Note
TFT Display area (AA)	36.72(H) x 48.96(V) (2.40 inch)	mm	-
Driver Element	TFT active matrix	-	-
Display Colors	65k/262k	colors	-
Number of pixels	240(RGB)x320	dots	-
TFT Pixel arrangement	RGB vertical stripe	-	-
Pixel Pitch	0.153(H)x0.153(V)	mm	-
Viewing angle	All	o'clock	-
TFT Controller IC	ST7789V	-	-
CTP Driver IC	FT6336G	-	-
Display mode	Transmissive, Normally Black	-	-
Touch Mode	Single point and gestures	-	-
Bonding Type	Таре	-	-
Operating temperature	-20-+70	°C	-
Storage temperature	-30-+80	°C	-

Mechanical Information

Item		Min	Typ.	Max	Unit	Note
	Horizontal (H)		42.92		mm	-
Module	Vertical (V)		60.26		mm	-
Size	Depth (D)		3.75		mm	-
	Weight				g	


1. Outline Dimensions

3

2. Block Diagram

3. Input Terminal Pin Assignment Recommended TFT Connnector: FH12S-45S-0.5SH(55)

Recommmended TFT Connnector: FH12S-45S-0.5SH(55) | Recommended CTP Connector: FH12-8S-0.5SH(55)

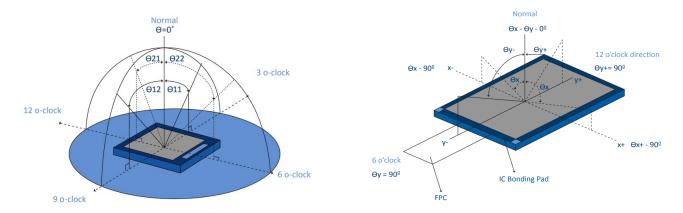
NO.	Symbol	Description	I/O				
1	GND	Ground	P				
2	VCI	Supply voltage (3.3V)	P				
3	IOVCC	I/O supply voltage (1.65-3.3V)	P				
4	IM2	terface Selection: IM2 IM0 Interface type DB Pin in use					
5	IM1	0 0 1 DBI Tyb_16-bit interface DB15-DB0 0 1 0 DBI Tyb_9-bit interface DB8-DB0 0 1 1 DBI Tyb_18-bit interface DB17-DB0	I				
6	IM0	0 1 1 DBI Tyb_ 18-bit interface DB17-DB0 1 0 1 3-Wire 9 BIT data serial SDA SCL CS 1 1 0 4-Wire 8 BIT data serial SDA SCL CS RS 1 1 0 1 1 1 1 1 1	I				
7	RESET	Reset signal of the device. Must be applied to properly initialize the chip.	I				
8	CS	Chip select pin, low enabled. Fix to VCI or GND when not in use.	I				
9	D/C(SPI_SCL)	Data or command selection pin in the parallel MCU interface. D/C=1, data is selected. D/C=0, command is selected. Pin is also used as the serial interface clock.	I				
10	WR(SPI_RS)	Write signal for the parallel MCU interface. Also acts as the second data pin in the serial interface. Fix to VCI or GND when not in use.					
11	RD	Read signal for the parallel MCU interface. Reads data at the rising edge. Fix to VCI or GND when not in use.	I				
12	VSYNC	Frame synchronizing signal for the RGB interface. Fix to VCI or GND when not in use.	I				
13	HSYNC	Line synchronizing signal for the RGB interface. Fix to VCI or GND when not in use.	I				
14	ENABLE	Data enable signal for the RGB interface. Fix to VCI or GND when not in use.	I				
15	DOTCLK	Dot clock signal for the RGB interface. Fix to VCI or GND when not in use.	I				
16	SDA	Serial data input signal. The data is latched at the rising edge of the SCL signal. Fix to VCI or GND when not in use.	I				
17-34	DB0-DB17	18-bit parallel bi-directional data bus for the parallel MCU and RGB interfaces. Fix to GND when not used.	I/O				
35	SDO	Serial interface output pin. The data is output on the falling edge of the SCL signal. Leave this pin open when not used.					
36	LEDA	Anode pin of the backlight	P				
37-40	LEDK1-LEDK4	Cathode pin of the backlight	P				
41-44	NC	Not connected					
45	GND	Ground	P				
7 7	O: Output P: Power		•				

I: Input, O: Output, P: Power

3.2 CTP

NO.	Symbol	Description	I/O
1	GND	Ground	P
2	VDDIO	I/O power supply voltage	P
3	VDD	Supply voltage	P
4	SCL	I2C clock input	I
5	SDA	I2C data input and output	I/O
6	INT	External interrupt pin	I
7	RST	Reset signal, low is active.	I
8	GND	Ground	P

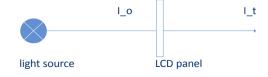
4. LCD Optical Characteristics


4.1 Optical Specifications

Optical S	pecification	15						
Item		Symbol	Condition	Min	Typ.	Max	Unit	Note
Color Gar	nut	S			70		%	(3)
Contrast R	atio	CR		600	800		%	(2)
ъ т.	Rising	Tr			16	21		(4)
Response Time	Falling	TF	NT 1 ' '		19	24	ms	(4)
	3371.14	W_X	Normal viewing	0.274	0.314	0.354		
	White	W _Y	angle $\theta=0$	0.314	0.345	0.385		
	Red	R_X		0.613	0.633	0.653		(5)(6)
Color Filter	Ked	R_{Y}		0.315	0.335	0.355		
Chromaticity	Green	G_X		0.304	0.324	0.344		
	Oreen	G_{Y}		0.594	0.614	0.634		
	Blue	B_X		0.130	0.150	0.170	<u> </u>	
	Diue	B_{Y}		0.027	0.047	0.067		
		ΘL			80			
Viorrina Amala	Hor.	ΘR	CR≥10		80		daamaaa	(1)(6)
Viewing Angle		ΘΤ			80		degrees	(1)(6)
	Ver.	ΘΒ			80			
Option View D	irection			All				(1)

Optical Specification Reference Notes:

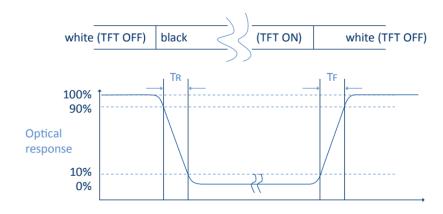
(1) Definition of Viewing Angle: The viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the LCD surface.



(2) Definition of Contrast Ratio (Cr): measured at the center point of panel. The contrast ratio (Cr) measured on a module, is the ratio between the luminance (Lw) in a full white area (R=G=B=1) and the luminance (Ld) in a dark area (R=G=B=0).

$$Cr = \frac{Lw}{Ld}$$

(3) Definition of transmittance (T%): The transmittance of the panel including the polarizers is measured with electrical driving. The equation for transmittance Tr is:


$$Tr = \frac{It}{Io} x 100\%$$

Io = the brightness of the light source.

It = the brightness after panel transmission

(4) Definition of Response Time (Tr, Tf): The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition.

(5) Definition of Color Gamut:

Measuring machine CFT-01. NTSC's Primaries: R(x,y,Y),G(x,y,Y), B(x,y,Y). FPM520 of Westar Display Technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics. The color chromaticity shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

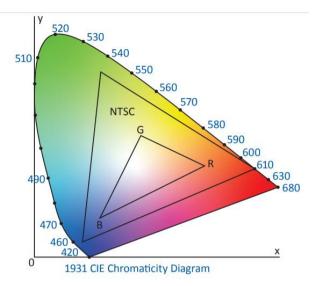
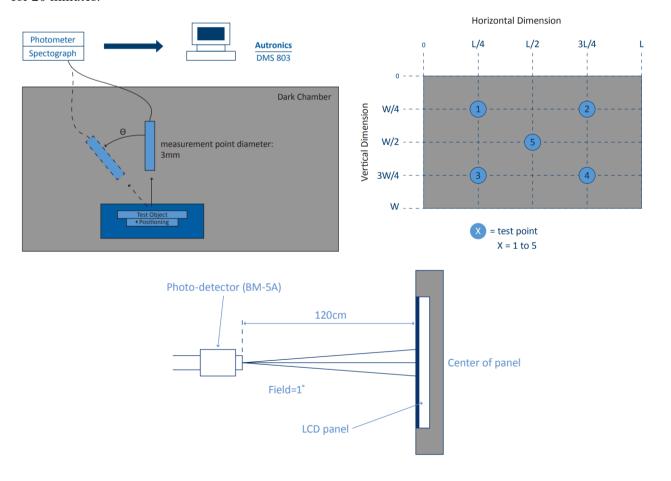



Fig. 1931 CIE chromacity diagram

Color gamut: $S = \frac{\text{Area of RGB triangle}}{\text{Area of NTSC triangle}} \times 100\%$

(6) Definition of Optical Measurement Setup:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 20 minutes.

5. TFT Electrical Characteristics

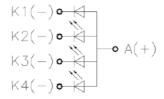
5.1 Absolute Maximum Rating (Ta=25 °C, VSS=0V)

Characteristics	Symbol	Min	Max	Unit
Digital Supply Voltage	VCI	-0.3	4.6	V
Analog Interface Supply Voltage	IOVCC	-0.3	4.6	V
Operating Temperature	TOP	-20	+70	°C
Storage Temperature	TST	-30	+80	°C

NOTE: If the absolute maximum rating of the above parameters is exceeded, even momentarily, the quality of the product may be degraded. Absolute maximum ratings specify the values which the product may be physically damaged if exceeded. Be sure to use the product within the range of the absolute maximum ratings.

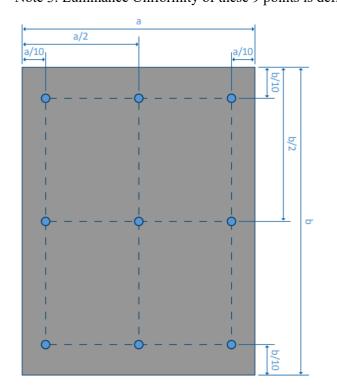
5.2 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур.	Max	Unit	Note
Digital Supply Voltage	VCI	2.4	3.3	3.6	V	
I/O Supply Voltage	IOVCC	1.65	1.8	3.3	V	
Normal Mode Current Consumption	IDD		7		mA	
Level Input Voltage	Vih	0.7*IOVCC		IOVCC	V	
Level input voltage	VIL	GND		0.3IOVCC	V	
Level Output Voltage	Voh	0.8IOVCC		IOVCC	V	
Level Sulput Voltage	Vol	GND		0.2IOVCC	V	


5.3 LED Backlight Characteristics

Item	Symbol	Min	Тур.	Max	Unit	Note
Forward Current	IF	60	80		mA	
Forward Voltage	VF		3.2		V	
LCM Luminance	LV	400			cd/m2	Note 3
LED lifetime	Hr		50000		hour	Note1 & 2
Uniformity	AVg	80			%	Note 3

The back-light system is edge-lighting type with 4 white LEDs.


Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25\pm3$ °C, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=80mA. The LED lifetime could be decreased if operating IL is larger than 80mA. The constant current driving method is suggested.

Backlight LED Circuit

Note 3: Luminance Uniformity of these 9 points is defined as below:

$$Luminance = (\underbrace{Total\ Luminance\ of\ 9\ points}_{9})$$

Uniformity = minimum luminance in 9 points(1-9) maximum luminance in 9 points(1-9)

6. AC Characteristic

6.1 Parallel RGB Interface Characteristics

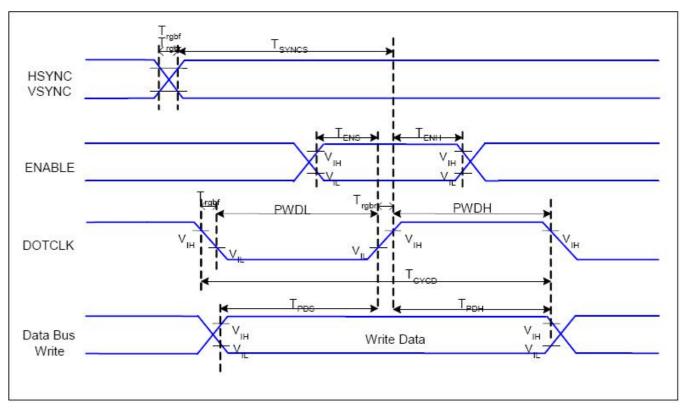
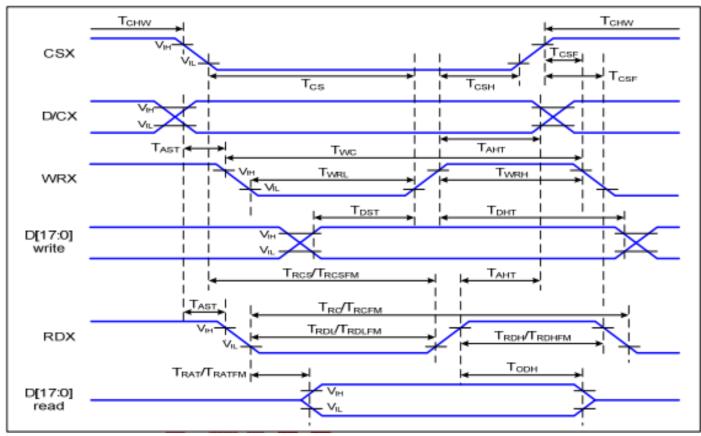


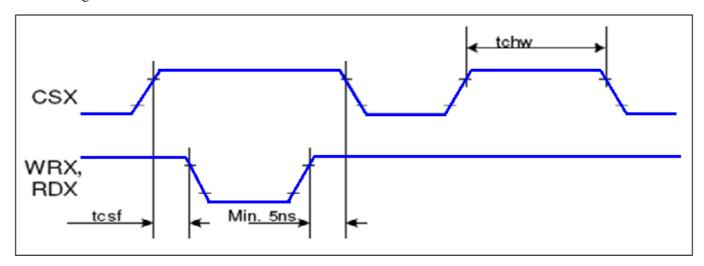
Figure 6.1: Parallel RGB Interface Timing Diagram

Signal	Symbol	Parameter	Min	Max	Unit	Description
HSYNC, VSYNC	T_{SYNCS}	VSYNC, HSYNC Setup Time	30	-	ns	
	T_{ENS}	Enable Setup Time	25	-	ns	
ENABLE	T_{ENH}	Enable Hold Time	25	-	ns	
	PWDH	DOTCLK High-level Pulse Width	60	-	ns	
	PWDL	DOTCLK Low-level Pulse Width	60	-	ns	
DOTCLK	T_{CYCD}	DOTCLK Cycle Time	120	-	ns	
	T_{RGHR}, T_{RGHF}	DOTCLK Rise/Fall Time	-	20	ns	
	T_{PDS}	PD Data Setup Time	50	-	ns	
DB	T_{PDH}	PD Data Hold Time	50	-	ns	

Table 6.1: Parallel RGB Interface Timing Characteristics

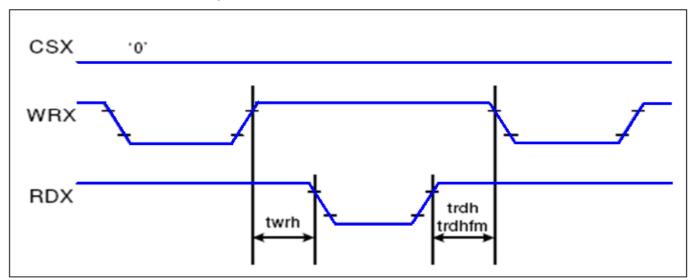
6.2 8080 Series MCU Parallel Interface Characteristics: 18/16/9/8-bit Bus



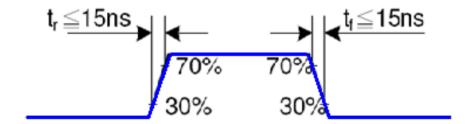

Figure 6.2: Parallel Interface Timing Characteristics (8080-Series MCU Interface)

Signal	Symbol	Parameter	Min	Max	Unit	Description
D/CX	T_{AST}	Address setup time	0	-	ns	
	T_{AHT}	Address hold time (Write/Read)	10	-	ns	
CSX	T_{CHW}	Chip select "H" pulse width	0	-	ns	
	T_{CS}	Chip select setup time (Write)	15	-	ns	
	T_{RCS}	Chip select setup time (Read ID)	45	-	ns	
	T_{RCSFM}	Chip select setup time (Read FM)	355	-	ns	
	T_{CSF}	Chip select wait time (Write/Read)	10	-	ns	
	T_{CSH}	Chip select hold time	10	ı	ns	
WRX	T_{WC}	Write cycle	66	ı	ns	
	T_{WRH}	Control pulse "H" duration	15	ı	ns	
	T_{WRL}	Control pulse "L" duration	15		ns	
RDX (ID)	T_{RC}	Read cycle (ID)	160	-	ns	
	T_{RDH}	Control pulse "H" duration (ID)	90	-	ns	
	T_{RDL}	Control pulse "L" duration	45	ı	ns	
RDX (FM)	T_{RCFM}	Read cycle (FM)	450	-	ns	
	T_{RDHFM}	Control pulse "H" duration (FM)	90	-	ns]
	T_{RDLFM}	Control pulse "L" duration (FM)	355	-	ns	
D[17:0]	T_{DST}	Write data setup time	10	-	ns	
D[15:0],	T_{DHT}	Write data hold time	10	-	ns	For max CL=30pF
D[8:0],	T_{RAT}	Read access time (ID)	-	40	ns	John Marie De John
D[7:0]	T_{RATFM}	Read access time (FM)	-	340	ns	For min CL=8pF
	T_{ROD}	Output disable time	20	80	ns	1

Table 6.2: 8080 Series MCU Parallel Timing Characteristics



CSX timings:



Note: Logic high and low levels are specified as 30% and 70% of IOVCC for input signals.

Write to read or read to write timings:

Note: Ta = -30 to 70 C, IOVCC = 1.65V to 2.8V, VCI = 2.6V to 3.3V, GND = 0V.

6.3 Display Serial Interface Characteristics (3-line SPI system)

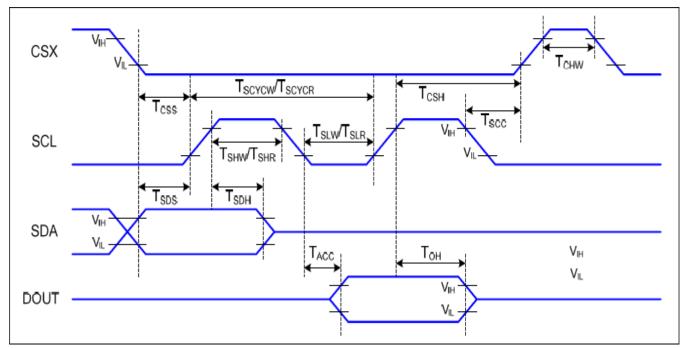


Figure 6.3: Serial Interface 3-SPI Timing Diagram

 $VDDI = 1.64 \ to \ 3.3V, \ VDD = 2.4 \ to \ 3.3V, \ AGND = DGND = 0V, \ Ta = -30 \ to \ 70 \ C^o$

Signal	Symbol	Parameter	Min	Max	Unit	Description
	T_{CSS}	Chip select setup time (write)	15		ns	
	T_{CSH}	Chip select hold time (write)	15		ns	
CSX	T_{CSS}	Chip select setup time (read)	60		ns	
	T_{SCC}	Chip select hold time (read)	65		ns	
	T_{CHW}	Chip select "H" pulse width	40		ns	
	T_{SCYCW}	Serial clock cycle (write)	66		ns	
	T_{SHW}	SCL "H" pulse width (write)	15		ns	
SCL	T_{SLW}	SCL "L" width (write)	15		ns	
SCL	T_{SCYCR}	Serial clock cycle (read)	150		ns	
	T_{SHR}	SCL "H" pulse width (read)	60		ns	
	T_{SLR}	SCL "L" pulse width (read)	60		ns	
CDA (DINI)	T_{SDS}	Data setup time	10			
SDA (DIN)	T_{SDH}	Data hold time	10		ns	
	T_{ACC}	Access time	10	50		For max
DOUT	T_{OH}	Output disable time	15	50	ns	CL=30pF For min CL=8pF

Table 6.4: 3-line Serial Interface Timing Characteristics

Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals

6.4 Display Serial Interface Characteristics (4-line SPI serial)

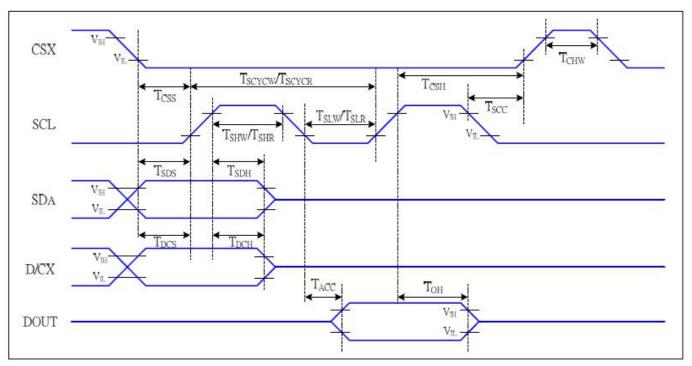


Figure 6.4: Serial Interface 4-SPI Timing Diagram

Signal	Symbol	Parameter	Min	Max	Unit	Description
	T_{CSS}	Chip select setup time (write)	15		ns	
	T_{CSH}	Chip select hold time (write)	15		ns	
CSX	T_{CSS}	Chip select setup time (read)	60		ns	
	T_{SCC}	Chip select hold time (read)	65		ns	
	T_{CHW}	Chip select "H" pulse width	40		ns	
	T_{SCYCW}	Serial clock cycle (write)	66		ns	write command &
	T_{SHW}	SCL "H" pulse width (write)	15		ns	_
SCL	T_{SLW}	SCL "L" width (write)	15		ns	data ram
SCL	T_{SCYCR}	Serial clock cycle (read)	150		ns	read command &
	T_{SHR}	SCL "H" pulse width (read)	60		ns	data ram
	T_{SLR}	SCL "L" pulse width (read)	60		ns	uata faili
D/CX	T_{DCS}	D/CX setup time	10		ns	
D/CX	T_{DCH}	D/CX hold time	10		ns	
SDA (DINI)	T_{SDS}	Data setup time	10		ns	
SDA (DIN)	T_{SDH}	Data hold time	10		ns	
DOUT	T_{ACC}	Access time	10	50	ns	For max
DOUT	T_{OH}	Output disable time	15	50	ns	CL=30pF For

Table 6.5: 4-line Serial Interface Timing Characteristics

 $\min CL = 8pF$

Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

15

www.FocusLCDs.com

6.5 Reset Timing

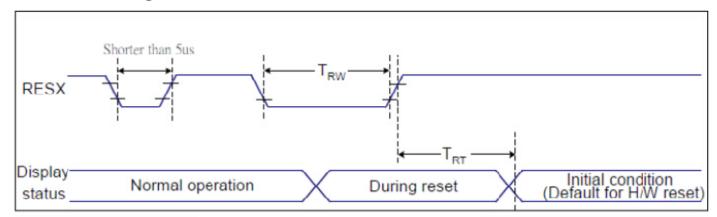
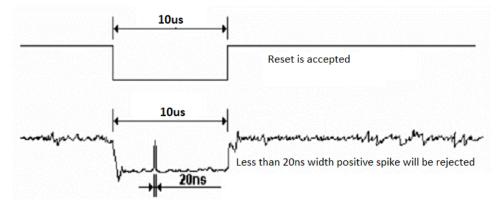


Figure 6.5: Reset Timing Diagram


Related Pins	Symbol	Parameter	Min	Max	Unit
RESX	TRW	Reset pulse duration	10	-	us
	трт	Paratagnal -	-	5 (Note 1,5)	ms
	TRT	Reset cancel		120 (Note 1, 6, 7)	ms

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not because irregular system reset according to the table below:

RESX Pulse	Action			
Shorter than 5us	Reset Rejected			
Longer than 9us	Reset			
Between 5us and 9 us	Reset starts			

- 3. During the resetting period, the display will be blanked (the display is entering blanking sequence, which maximum time is 120ms, when reset starts in Sleep Out mode. The display remains the blank state in Sleep in mode) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5ms after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120ms.

7. CTP Electrical Characteristics

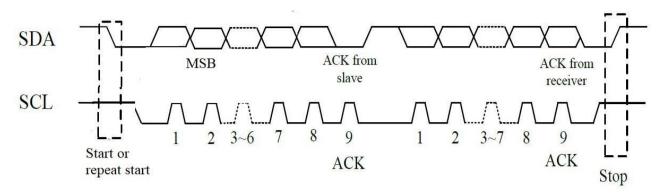
7.1 Absolute Maximum Rating

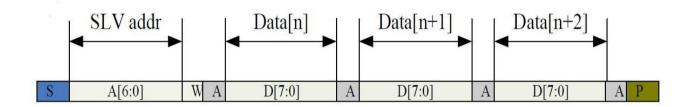
ltem	Symbol	Min	Max	Unit	Note
Power Supply Voltage	VDD	-0.3	3.6	V	1
I/O Digital Voltage	VDDIO	1.8	3.6	V	1
Operating Temperature	T _{OP}	-30	+70	°C	-
Storage Temperature	T _{ST}	-30	+80	°C	-

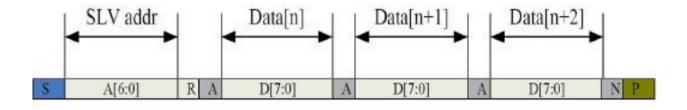
Note 1: If used beyond the absolute maximum ratings, FT6336G may permanently damage. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

7.2 DC Electrical Characteristics (Ta=25°C)

Item	Symbol	Condition	Min	Тур.	Max	Unit	Note
Digital supply voltage	VDD		2.8	3.3	3.6	V	
I/O Digital supply voltage	VDDIO		1.8	3.3	3.6	V	
Normal operation mode current consumption	l _{OPr}	VDD=2.7V		4		mA	
Monitor mode current consumption	I _{mon}	Ta=25°C MCLK=17.5M		1.5		mA	
Sleep mode current consumption	I _{sip}	Hz		50		uA	
Level input voltage	V_{IH}		0.7VDDIO		VDDIO	٧	
	V_{IL}		-0.3		0.3VDD	٧	
I avail availavaile aa	VOH	I _{OH} =-0.1mA	0.7VDDIO			V	
Level output voltage	V_{OL}	I _{OL} =0.1mA			0.3VDDIO	V	


7.3 AC Characteristics


Item	Symbol	Test Condition	Min	Тур.	Max	Unit	Note
OSC clock 1	fosc1	VDDA=2.7V; Ta=25°C	49	50	51	MHz	
Sensor acceptable clock	ftx	VDDA=2.8V; Ta=25°C	0	100	300	kHz	
Sensor output rise time	Ttxr	VDDA=2.8V; Ta=25°C	-	100	1	Ns	
Sensor output fall time	Ttxf	VDDA=2.8V; Ta=25°C	-	80	1	Ns	
Sensor input voltage	Trxi	VDDA=2.8V; Ta=25°C	-	5	-	٧	



7.4 I2C Interface

The I2C is always configured in the slave mode. The data transfer format is shown below.

The following table lists the meanings of the mnemonics used in the above figures.

Mnemonics	Description
S	I2C start or I2C restart
A [6:0]	Slave address
R/W	Read/Write bit, '1' for read, '0' for write
A(N)	ACK(NACK)
Р	Stop: the indication of the end of a packet (if this bit is missing, S will indicate the end of the current packet and the beginning of the next packet)

I2C Interface Timing Characteristics

1_0 11100 11100 111110 8 0111110 101100			
Parameter	Min	Max	Unit
SCL frequency	10	400	kHz
Bus free time between a stop and start condition	4.7	-	us
Hold time (repeated) start condition	4.0	-	us
Data setup time	250	-	ns
Setup time for a repeated start condition	4.7	-	us
Setup time for stop condition	4.0	-	us

8. Cautions and Handling Precautions

8.1 Handling and Operating the Module

- 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assembly work.
- 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch the surface.
- 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur.
- 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- 8. Protect the module from static; it may cause damage to the CMOS ICs.
- 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- 10. Do not disassemble the module.
- 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- 12. Pins of I/F connector shall not be touched directly with bare hands.
- 13. Do not connect, disconnect the module in the "Power ON" condition.
- 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence.

8.2 Storage and Transportation

- 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%
- 2. Do not store the TFT-LCD module in direct sunlight.
- 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.