

Ph. 480-503-4295 | NOPP@FocusLCD.com

TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

TFT Display Module

Part Number E35RC-B-MW360-C

Overview:

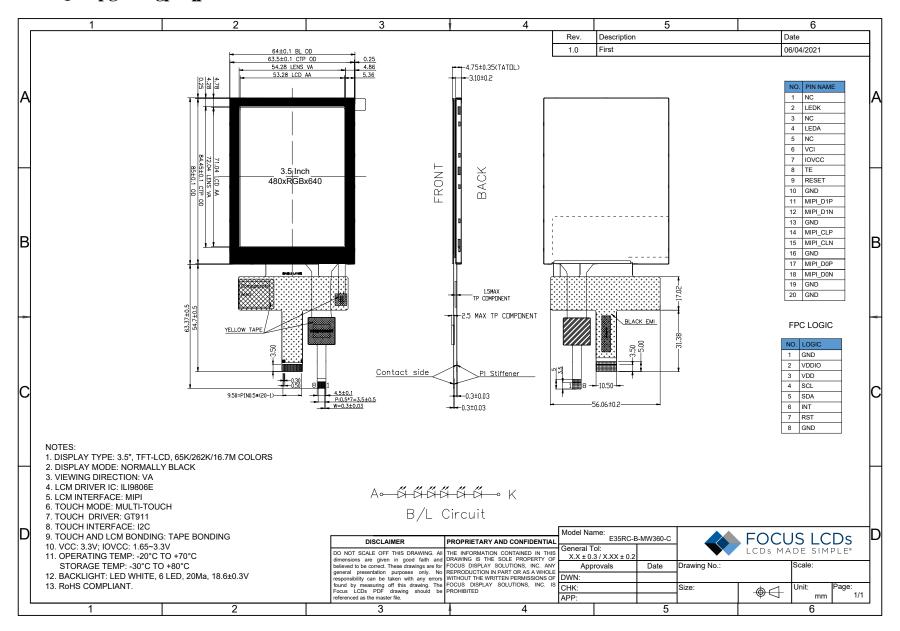
- 3.5-inch TFT (64x85)
- 480 640
- 2-lane MIPI DSI Interface
- ‡ 'u erature
- All View, VA

- Blanview
- Capacitive Touch Panel
- 360 NITS
- TFT IC: ILI9806E
- RoHS Compliant

Description

This is a color active matrix TFT (Thin Film Transistor) LCD (Liquid Crystal Display) that uses amorphous silicon TFT as a switching device. This model is composed of a blanview type TFT LCD Panel, driver circuit, a capacitive touch panel and a backlight unit. The resolution of the 3.5" TFT-LCD contains 480(RGB)x640 pixels and can display up to 16.7M colors.

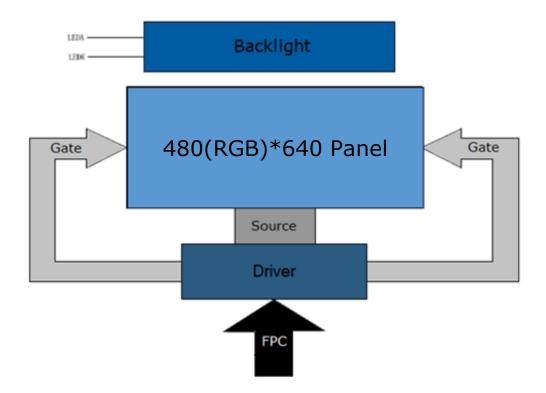
TFT Features


Low Input Voltage: 3.3V Display Colors: 16.7M Interface: 2-lane MIPI DSI

General Information Items	Specification Main Panel	Unit	Note
TFT Display area (AA)	53.28(H) x 71.04 (3.5 inch)	mm	-
Driver Element	TFT active matrix	-	-
Display Colors	16.7M	colors	-
Number of pixels	480(RGB)x640	pixels	-
TFT Pixel arrangement	RGB vertical stripe	-	-
Pixel Pitch	0.111 (H)x0.111 (V)	mm	-
Viewing angle	All View, VA	o'clock	-
TFT Controller IC	ILI9806E	-	-
CTP Controller	GT911		
TFT Interface	2-lane MIPI	-	-
CTP Interface	I2C		
Display mode	Blanview/ Normally Black	-	-
Touch Mode	5 points and gestures		
Operating temperature	-20-+70	°C	-
Storage temperature	-30-+80	°C	-

Mechanical Information

	Item	Min	Typ.	Max	Unit	Note
	Horizontal (H)		64		mm	-
Module	Vertical (V)		85		mm	-
Size	Depth (D)		4.75		mm	-
	Weight		TBD		g	


30' Qwwlpg'Flo gpulqpu

3 www.FocusLCDs.com

2. Block Diagram

Input TFT Terminal Pin Assignment Recommended TFT Connector: FH19C-20S-0.5SH(10)

Recommended CTP Connector: FH12-8S-0.5SH(55)

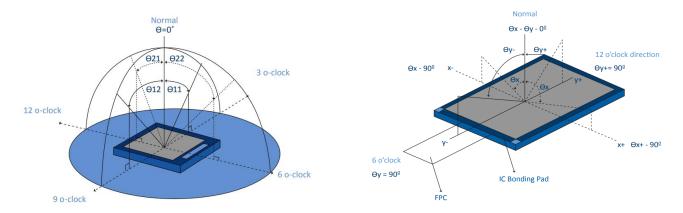
NO.	Symbol	Description	I/O
1	NC	Not connected	
2	LEDK	Cathode pin of the backlight	P
3	NC	Not connected	
4	LEDA	Anode pin of the backlight	P
5	NC	Not connected	
6	VCI	Supply voltage (3.3V)	P
7	IOVCC	I/O power supply voltage (1.65-3.3V)	P
8	TE	Tearing effect output	I
9	RESET	External reset signal. Initializes the chip at active low.	I
10	GND	Ground	P
11	D1P	MIPI DSI differential data pair lane 1	I/O
12	D1N	Will I DSI differential data pair faile I	1/0
13	GND	Ground	P
14	CLKP	MIPI DSI differential clocking pair	I/O
15	CLKN	Will I DSI differential clocking pair	1/0
16	GND	Ground	P
17	D0P	MIDI DSI differential data pair lane 0	I/O
18	D0N	MIPI DSI differential data pair lane 0	1/0
19	GND	Ground	P
20	GND	Ground	P

I: Input, O: Output, P: Power

CTP 3.1

NO.	Symbol	Description	I/O
1	GND	Ground	P
2	NC	Not connected	
3	VDD	Supply voltage	P
4	SCL	I2C clock input	I
5	SDA	I2C data input and output	I/O
6	INT	External interrupt to the host	I
7	RST	External reset, active low	I
8	GND	Ground	P

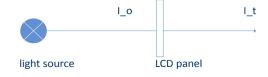
4. LCD Optical Characteristics


4.1 Optical Specifications

Item	pecification	Symbol	Condition	Min	Тур.	Max	Unit	Note
Color Gar	nut	S%			51.7		%	(3)
Contrast R	atio	CR		500	700		%	(2)
р т'	Rising				25			(4)
Response Time	Falling	TR+TF			25		ms	(4)
	3371 1	W_X	$\theta = 0$	0.2594	0.2994	0.3394		
	White	W_{Y}	Normal viewing	0.2899	0.3299	0.3699		
	Red	R_X	angle	0.4975	0.5375	0.5775		
Color Filter	Red	R_{Y}	angic	0.2928	0.3328	0.3728		(5)(6)
Chromaticity	Cassan	G_X		0.2970	0.3370	0.3770		(5)(6)
	Green	G_{Y}		0.5346	0.5746	0.6146	1	
	Blue	B_X		0.1139	0.1539	0.1939		
	Diue	B_{Y}		0.0746	0.1146	0.1549		
		ΘL			80			
Viewing Angle	Hor.	ΘR	CR≥10		80		degrees	(1)(6)
viewing Angle		ΘΤ			80		degrees	(1)(0)
	Ver.	ΘΒ			80			
Option View Direction				VA				(1)

Optical Specification Reference Notes:

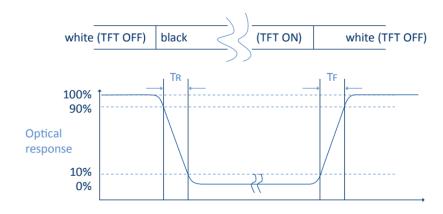
(1) Definition of Viewing Angle: The viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the LCD surface.



(2) Definition of Contrast Ratio (Cr): measured at the center point of panel. The contrast ratio (Cr) measured on a module, is the ratio between the luminance (Lw) in a full white area (R=G=B=1) and the luminance (Ld) in a dark area (R=G=B=0).

$$Cr = \frac{Lw}{Ld}$$

(3) Definition of transmittance (T%): The transmittance of the panel including the polarizers is measured with electrical driving. The equation for transmittance Tr is:


$$Tr = \frac{It}{Io} x 100\%$$

Io = the brightness of the light source.

It = the brightness after panel transmission

(4) Definition of Response Time (Tr, Tf): The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition.

(5) Definition of Color Gamut:

Measuring machine CFT-01. NTSC's Primaries: R(x,y,Y),G(x,y,Y), B(x,y,Y). FPM520 of Westar Display Technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics. The color chromaticity shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

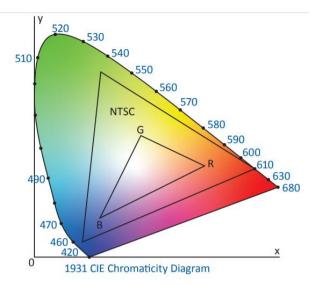
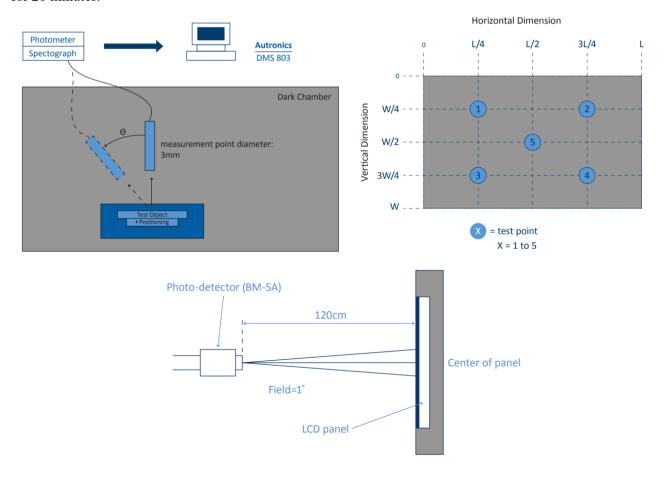



Fig. 1931 CIE chromacity diagram

Color gamut: $S = \frac{\text{Area of RGB triangle}}{\text{Area of NTSC triangle}} \times 100\%$

(6) Definition of Optical Measurement Setup:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 20 minutes.

5. TFT Electrical Characteristics

5.1 Absolute Maximum Rating (Ta=25 °C, VSS=0V)

Characteristics	Symbol	Min	Max	Unit
Digital Supply Voltage	VCI	-0.3	4.6	V
DC/DC Supply Voltage	IOVCC	-0.3	4.6	
Operating Temperature	TOP	-20	+70	°C
Storage Temperature	TST	-30	+80	°C

NOTE: If the absolute maximum rating of the above parameters is exceeded, even momentarily, the quality of the product may be degraded. Absolute maximum ratings specify the values which the product may be physically damaged if exceeded. Be sure to use the product within the range of the absolute maximum ratings.

5.2 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур.	Max	Unit	Note
Power Supply Voltage	VCI	2.5	3.3	3.6	V	
Digital Supply Voltage	IOVCC	1.65	1.8	3.6	V	
Normal Mode Current	IDD		38		mA	
Differential Input High Threshold Voltage	VIT+		0	50	mV	
Differential Inpu tLow Threshold Voltage	VIT-	-50	0		mV	
Single ended receiver input operation voltage	VIR	0.5		1.2	V	

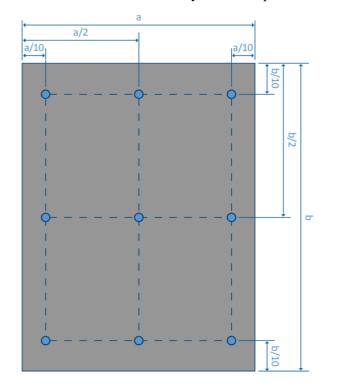
5.3 MIPI DC Electrical Characteristics

Characteristics	Symbol	Min	Тур.	Max	Unit
Low power mode operating voltage	VLPH	1.1	1.2	1.3	V
Single ended input low voltage	VILHS	-40			mV
Single ended input high voltage	VIHHS			460	mV
Common mode voltage	VCMRXDC	70		330	mV
Differential input impedance	ZID	80	100	125	ohm
Pad signal voltage	VI	-50		1350	mV
Logic 0 input threshold	VIL	0		550	mV
Logic 1 input threshold	VIH	880		1350	mV
Output low level	VOL	-50		50	mV
Output high level	VOH	1.1	1.2	1.3	V

5.4 LED Backlight Characteristics

Item	Symbol	Min	Тур.	Max	Unit	Note
Forward Current	IF	15	20		mA	
Forward Voltage	VF		18.6		V	
LCM Luminance	LV	320	360		cd/m2	Note 3
LED lifetime	Hr		50000		hour	Note1 & 2
Uniformity	AVg	80			%	Note 3

The back-light system is edge-lighting type with 6 white LEDs.

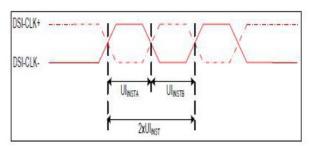

Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25\pm3$ °C, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=20mA. The LED lifetime could be decreased if operating IL is larger than 20mA. The constant current driving method is suggested.

Backlight LED Circuit

Note 3: Luminance Uniformity of these 9 points is defined as below:

$$Luminance = (\underbrace{Total\ Luminance\ of\ 9\ points}_{Q})$$


Uniformity = minimum luminance in 9 points(1-9) maximum luminance in 9 points(1-9)

6. MIPI Interface AC

Characteristics

..

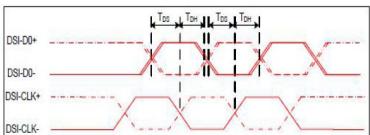


Figure 6.1: DSI Clock Channel Timing Diagram

Signal	Symbol	Parameter	Min	Max	Unit	Note
DSI-CLK+/-	2xUIINSTA	Double UI Instantaneous	4	25	ns	
DSI-CLK+/-	UIINSTA UIINSTB	UI Instantaneous Halves	2	12.5	ns	UI=UIINSTA=UIINST
DSI-Dn+/-	tDS	Data to clock setup time	0.15		UI	
DSI-Dn+/-	tDH	Data to clock hold time	0.15		UI	

Table 6.1: MIPI Interface High Speed Mode Timing Characteristics

6.2 Low Power Mode

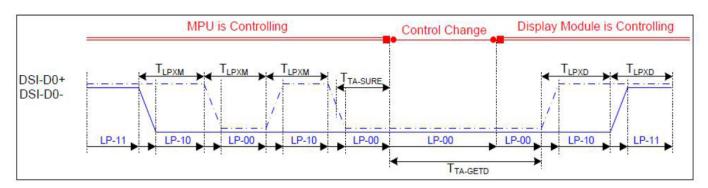


Figure 6.2: Bus Turnaround (BTA) from Display Module to MPU Timing Diagram

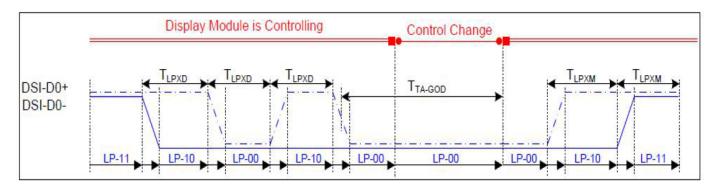


Figure 6.3: Buss Turnaround (BTA) from MPU to Display Module Timing Diagram

Signal	Symbol	Parameter	Min	Max	Unit	Note
DSI-D0+/-	TLPXM	Length of LP-00, LP_01, LP-10 or LP-11 periods MPU-> Display	50	75	ns	Input
DSI-D0+/-	TLPXD	Module Length of LP-00, LP_01, LP-10 or LP-11 periods MPU-> Display	50	75	ns	Output
DSI-D0+/-	TTA-SURED	Module Time-out before the MPU starts driving	TLPXI	2xTLPX D	K ns	Output
DSI-D0+/-	TTA-GETD	Time to drive LP-00 by display module	5xT	LPXD	ns	Input
DSI-D0+/-	TTA-GOD	Time to drive LP-00 after turnaround request-MPU	4xT	LPXD	ns	Output

Table 6.2: MIPI Interface Low Power Mode Timing Characteristics

12

6.3 Bursts Mode

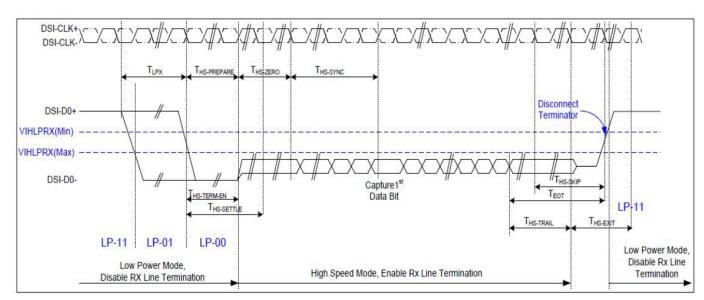


Figure 6.4: Data Lanes Low Power Mode to/from High Speed Mode Timing Diagram

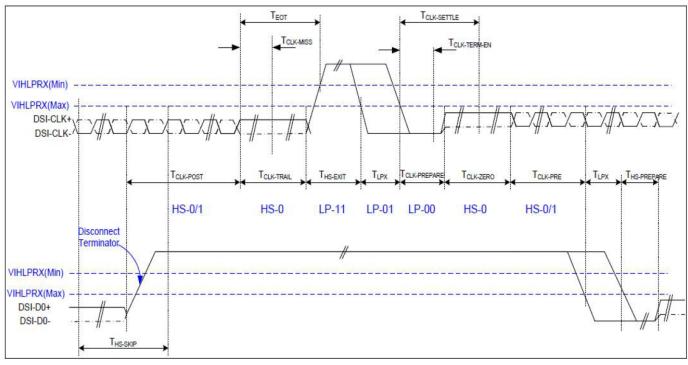


Figure 6.5: Clock Lanes High Speed Mode to/from Low Power Mode Timing Diagram

Signal	Symbol	Parameter	Min	Max	Unit	Note
	L	ow Power Mode to High Speed Mode	e Timing			
DSI-Dn+/-	TLPX	Length of any low power state period	50		ns	Input
DSI-Dn+/-	THS-PREPARE	Time to drive LP-00 to prepare for HS transmission	40+4UI	85+6UI	ns	Input
DSI-Dn+/-	THS-TERM-EN	Time to enable data receiver line termination measured from when Dn crosses VILMAX		35+4UI	ns	Input
DSI-Dn+/-	THS- PREPARE+	THS-PREPARE+time to drive HS-0 before the sync sequence	140+10UI		ns	Input
	THS-ZERO H	ligh Speed Mode to Low Power Mode	e Timing			
DSI-Dn+/-	THS-SKIP	Time-out at display module to ignore transition period of EoT	40	55+4UI	ns	Input
DSI-Dn+/-	THS-EXIT	Time to drive LP-11 after HS burst	100		ns	Input
DSI-Dn+/-	THS-TRIAL	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60+4UI		ns	Input
	High	Speed Mode to/from Low Power Mo	ode Timing	3		
DSI-CLK+/-	TCLK-POS	Time that the MPU shall continue sending HS clock after the last associated data lane has transitioned to LP mode	60+52UI		ns	Input
DSI-CLK+/-	TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60		ns	Input
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100		ns	Input
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for Hs transmission	38	95	ns	Input
DSI-CLK+/-	TCLK-TERM-EN	Time out at clock ands display module to enable HS transmission		38	ns	Input
DSI-CLK+/-	TCLK- PREPARE+	Minimum lead HS-0 drive period before starting clock	300		ns	Input
DSI-CLK+/-	TCLK-ZERO TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8UI		ns	Input
DSI-CLK+/-	ТЕОТ	Time from start of TCLK-TRAIL period to start of LP-11 state		105+12	ns	Input

Table 6.3: Bursts Mode LP to/from HS Mode Timing Characteristics

6.4 Reset Timing

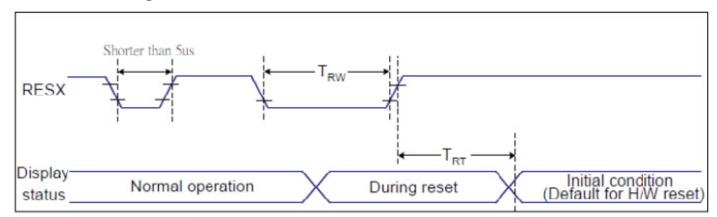
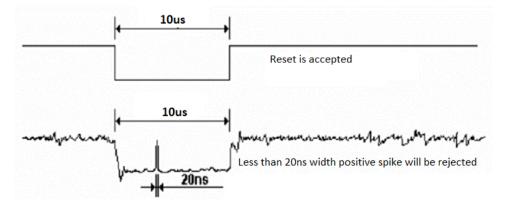


Figure 6.6: Reset Timing Diagram


Related Pins	Symbol	Parameter	Min	Max	Unit
	TRW	Reset pulse duration 10 -		-	us
RESX	TDT	D 4 1	-	5 (Note 1,5)	ms
	TRT	Reset cancel		120 (Note 1, 6, 7)	ms

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not because irregular system reset according to the table below:

RESX Pulse	Action		
Shorter than 5us	Reset Rejected		
Longer than 9us	Reset		
Between 5us and 9 us	Reset starts		

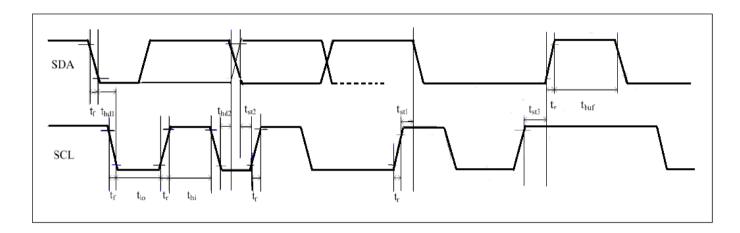
- 3. During the resetting period, the display will be blanked (the display is entering blanking sequence, which maximum time is 120ms, when reset starts in Sleep Out mode. The display remains the blank state in Sleep in mode) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5ms after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120ms.

7. CTP Specification

7.1 Absolute Maximum Rating

Item	Symbol	Min	Max	Unit	Note
Power Supply Voltage	VDD	2.66	3.47	V	
Operating Temperature	Тор	-20	+70	°C	
Storage Temperature	Tst	-30	+80	°C	


7.2 DC Electrical Characteristics (TA=25°C)

Item	Min	Тур.	Max	Unit	Note
Normal Mode Operating Current		8		mA	
Green Mode Current Consumption		3.3		mA	
Sleep Mode Current Consumption	70		120	uA	
Digital Supply Voltage (VDD)	2.8		3.3	mA	
Digital Input Low Voltage (VIL)	-0.3		0.25VDD	V	
Digital Input High Voltage (VIH)	0.75VDD		VDD+0.3	V	
Digital Output Low Voltage (VOL)			0.15VDD	V	
Digital Output High Voltage (VOH)	0.85VDD			V	

7.3 I2C Interface Characteristics

GT911 provides a standard I2C interface for SCL and SDA to communicate with the host. GT911 always serves as slave device in the system with all communication being initialized by the host. It is recommended that transmission rate be kept at or below 400kbps. The figure shown below is the I2C timing:

Parameter	Symbols	Condition	Min	Max	Units
SCL low period	tlo		1.3		us
SCL high period	thi		0.6		us
SCL setup time for start condition	tst1		0.6		us
SCL setup time for stop condition	tst3		0.6		us
SCL hold time for start condition	thd1		0.6		us
SDA setup time	tst2		0.1		us
SDA hold time	thd2		0		us

Table 7.1: I2C AC Characteristics, 1.8V interface voltage, 400kbps transmission rate, 2k pull-up resistor

Parameter	Symbols	Condition	Min	Max	Units
SCL low period	tlo		1.3		us
SCL high period	thi		0.6		us
SCL setup time for start condition	tst1		0.6		us
SCL setup time for stop condition	tst3		0.6		us
SCL hold time for start condition	thd1		0.6		us
SDA setup time	tst2		0.1		us
SDA hold time	thd2		0		us

Table 7.2: I2C AC Characteristics, 3.3V interface voltage, 400kbps transmission rate, 2k pull-up resistor

17

GT911 supports two I2C slave addresses: 0xBA/0xBB and 0x28/0x29. The host can select the address by changing the status of Reset and INT pins during the power-on initialization phase. The configuration methods and timings are shown

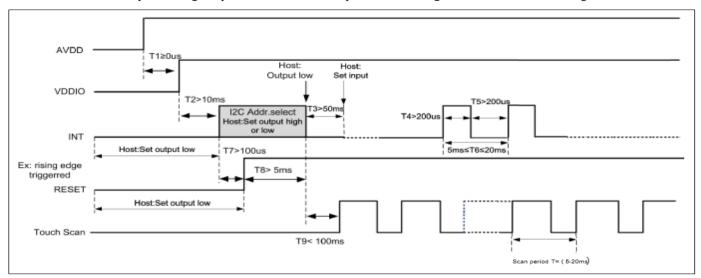


Figure 7.1: I2C Power on Timing

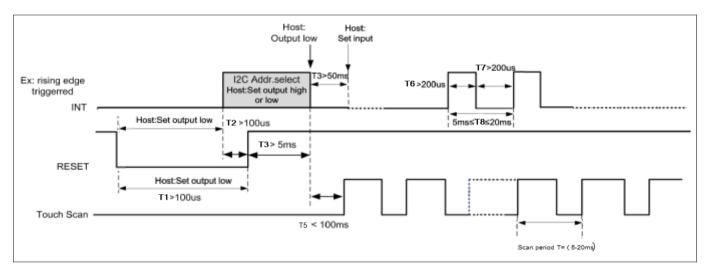


Figure 7.2: I2C Host Resetting Timing

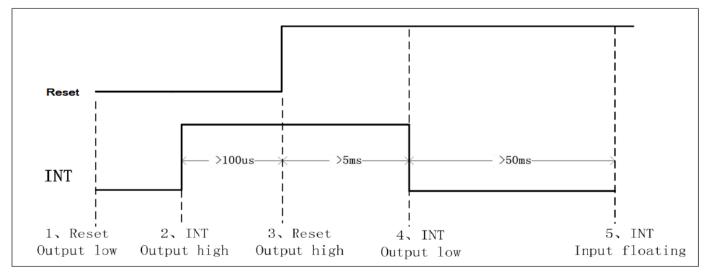


Figure 7.3: Setting Slave Address to 0x28/0x29 Timing

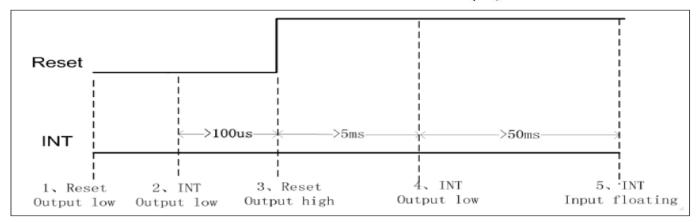


Figure 7.4: Setting Slave Address to 0xBA/0xBB Timing

Data Transmission (ex. 0xBA/0xBB)

Communication is always initiated by the host. Valid start condition is signaled by pulling SDA line from high to low when SCL is high. Data flow or address is transmitted after the start condition.

All slave devices connected to I2C bus should detect the 8-bit address issued after start condition and send the correct ACK. After receiving matching address, GT911 acknowledges by configuring SDA line as output port and pulling SDA line low during the ninth SCL cycle. When receiving unmatched address, namely not 0xBA or 0xBB, GT911 will stay in an idle state.

For data bytes on SDA, each of the 9 serial bits will be sent on nine SCL cycles. Each data byte consists of 8 valid data bits and one ACK or NACK bit sent by the recipient. The data transmission is valid when SCL line is high. When communication is completed the host will issue the stop condition. Stop condition implies the transition of SDA line from low to high when SCL is high.

Writing Data to GT911

The diagram displays the timing sequence of the host writing data onto GT911. First the host issues a start condition. The host sends 0xBA (address bits and R/W bit; R/W bit as 0 indicates write operation) to the slave device. After receiving ACK, the host sends the 16-bit register address (where writing starts) and the 8-bit data bytes (to be written onto the register)

The location of the register address pointer will automatically add 1 every write operation. When the host needs to perform write operations on a group of registers of continuous addresses it can write continuously. The write operation is terminated when the host issues the stop condition.

Reading Data from GT911

The diagram below is the timing sequence of the host reading data from GT911. The host issues the start condition and sends 0xBA (Address bits and R/W bit, R/W bit as 0 indicates write operation) to the slave device. After receiving ACK, the host sends the 16-bit register address (where reading starts) to the slave device. Then the host sets register addresses which need to be read.

The host issues the start condition once again and sends 0xBB (read operation). After receiving ACK, the host starts to read the data. GT911 also supports continuous read operation. When receiving a byte of data, the host sends an ACK signal indicating successful reception. After receiving the last byte of data, the host sends a NACK signal followed by a STOP condition which terminates communication.

19

8. Cautions and Handling Precautions

8.1 Handling and Operating the Module

- 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assembly work.
- 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch the surface.
- 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur.
- 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- 8. Protect the module from static; it may cause damage to the CMOS ICs.
- 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- 10. Do not disassemble the module.
- 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- 12. Pins of I/F connector shall not be touched directly with bare hands.
- 13. Do not connect, disconnect the module in the "Power ON" condition.
- 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence.

8.2 Storage and Transportation.

- 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%
- 2. Do not store the TFT-LCD module in direct sunlight.
- 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.